
University of Cyprus

Department of

Computer Science

EPL448: Data Mining

on the Web – Lab 6

Παύλος Αντωνίου

Γραφείο: B109, ΘΕΕ01

Prepare data for machine learning

• Data preparation is the process of gathering, combining, structuring

and organizing data so it can be used in Exploratory Data Analysis

(statistical analysis and visualization) and Predictive Modelling

– Gather/combine data: Finding the right data. This can come from databases,

files (.csv, .json, .txt, .xml) or Rest APIs (web-based apps).

– Preprocess data: Organize your selected data by formatting, cleaning,

encoding and (re-)sampling.
• Cleaning data is the fixing/deleting/filling in missing data

• Encoding is the conversion of labeled/categorical data into numerical data

• Resampling is about changing the frequency of observations

– Transform data: Transform preprocessed data by engineering features using

scaling, unskewing, feature selection and feature extraction (next lab) for

achieving better performance of predictive modelling methods
• Scaling is the process of rescaling or standardizing or normalizing features

• Unskewing is making features’ distribution symmetrical

Cleaning data

• Fixing up formats

– Often when data is coming from various international sources may (a) involve

mixed formats, and/or (b) not follow the expected numeric syntax

• decimal separator is dot (need to be replaced if comma)

• there is no thousands separator (need to be removed if any)

• monetary symbols before or after numbers (need to be removed if any)

– Data may not follow the default (expected by Python plots or functions)

formats

• e.g. dates as integers 20090609231247 instead of the expected format 2009-06-09

23:12:47 (ISO 8601 format) need to be transformed

Cleaning data

• Deleting missing values

– may delete rows if the number of these rows is relatively small compared to

the dataset

• e.g. do not account for more than 10% of all lines

– may delete rows if rows to be deleted are not important

• e.g. do not contain info about a specific category in dataset

– missing ages in some rows may correspond to older and more privacy or conscious users and

are important in the decision-making process, so cannot be removed

– This is not an easy task, especially if we are not familiar with the dataset

– action can be performed with Pandas dropna(), see next slides

Cleaning data

• Filling in missing values

– For categorical data (e.g. device type, countries) makes sense to create a

new category ‘unknown’

– For numerical values (e.g. age) makes sense to use:

• Statistical aggregations such as mean or median of either (a) all rows of the column or

(b) take into account rows belonging to the same category of that of the missing value

• Interpolation: applied on time-series data, see slides about sampling

– Build a predictors to predict a missing value based on columns that do have

data

• Correcting erroneous values

– For some columns, some values can

be identified as obviously incorrect

• E.g. find a number in a gender column

• an age column with values below 0 or well over 100 (outliers)

Cleaning data

• Standardizing categories

– When data collected directly from users, especially from text fields →

spelling mistakes, language differences → a given answer may be provided

in multiple ways

• E.g. country: USA, United States, U.S

• E.g. dates: 1982-10-01, 1/10/1982

– Goal: standardize values to ensure that there is only one version of each

value

Missing values manipulation

• Missing values are marked as NaN
In []: # Read a dataset with missing values (download zipped dataset from here)

nfl_data = pd.read_csv('NFL Play by Play 2009-2016 (v3).csv', dtype='unicode')

nfl_data.head()

Out[]: Date GameID ... yacWPA Season

0 2009-09-10 2009091000 ... NaN 2009

1 2009-09-10 2009091000 ... 0.03689896441538476 2009

2 2009-09-10 2009091000 ... NaN 2009

3 2009-09-10 2009091000 ... -0.1562385319864913 2009

4 2009-09-10 2009091000 ... NaN 2009

In []: nfl_data.isnull().head()

Out[]: Date GameID Drive qtr down ... Win_Prob WPA airWPA yacWPA Season

0 False False False False True ... False False True True False

1 False False False False False ... False False False False False

2 False False False False False ... False False True True False

3 False False False False False ... False False False False False

4 False False False False False ... False False True True False

https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB06/NFL%20Play%20by%20Play%202009-2016%20(v3).zip

Missing values manipulation

• There is a number of methods to deal with missing values in the

data frame:

df.method() description

dropna() Drop observations (rows) with at least one missing value

dropna(how='all') Drop observations (rows) where all cells is NA

dropna(axis=1) Drop the columns where at least one value is missing

dropna(thresh = 5) Drop rows that contain less than 5 non-missing values

fillna(0) Replace missing values with a specified value

isnull() returns True if the value is missing

notnull() Returns True for non-missing values

IMPORTANT NOTE: All methods return a new DataFrame object unless the inplace parameter is set to True

Missing values manipulation

9

In []: # get the number of missing data points per column; sum True values

missing_values_count = nfl_data.isnull().sum()

look at the # of missing points in the first ten columns

missing_values_count[0:10]

Out[]: Date 0

GameID 0

Drive 0

qtr 0

down 54218

time 188

TimeUnder 0

TimeSecs 188

PlayTimeDiff 374

SideofField 450

dtype: int64

Drop rows with missing values
In []: # remove all the rows that contain a missing value

nfl_data.dropna()

Out[]:

It looks like that's removed all our data! This is because
every row in our dataset had at least one missing value.

Drop columns with missing values
In []: # remove all columns with at least one missing value

columns_cleaned = nfl_data.dropna(axis=1)

columns_cleaned.head()

Out[]: Date GameID Drive ... ExPoint_Prob TwoPoint_Prob Season

0 2009-09-10 2009091000 1 ... 0 0 2009

1 2009-09-10 2009091000 1 ... 0 0 2009

2 2009-09-10 2009091000 1 ... 0 0 2009

3 2009-09-10 2009091000 1 ... 0 0 2009

4 2009-09-10 2009091000 1 ... 0 0 2009

[5 rows x 41 columns]

In []: # just how much data did we lose?

print("Columns in original dataset: %d" % nfl_data.shape[1])

print("Columns with na's dropped: %d" % columns_cleaned.shape[1])

Out[]: Columns in original dataset: 102

Columns with na's dropped: 41

nfl_data.dropna(subset=["down", "SideofField"])

We can also define in which columns to look for missing values.

Fill in missing values

• One option we have is to specify what we want the NaN values to

be replaced with

• Another option is to replace missing values with the first valid value

comes after it in the same column

– This makes a lot of sense for datasets where the observations have some

sort of logical order to them

In []: # replace all NA's with 0. the nfl_data dataframe is modified in place

nfl_data.fillna(0, inplace=True)

replace all NA's with 0 for a specific column

nfl_data['yacWPA'].fillna(0, inplace=True)

In []: # replace all NA's the first valid value that comes after it in the

same column, then replace all the remaining na’s (if any) with 0

nfl_data.fillna(method = 'bfill', axis=0, inplace=True).fillna(0)

Fill in missing values with imputation

• Imputation fills in the missing value with some number

• Imputed value won't be exactly right in most cases, but it usually

gives more accurate models than dropping the column entirely

– SimpleImputer takes two arguments such as missing_values and strategy

• Strategy can be set to mean, median, most_frequent, constant (with fill_value argument)

– Numerical missing values: mean, median, most frequent, constant

– Categorical missing values: most frequent, constant

– fit_transform method is invoked on the instance of SimpleImputer to impute

the missing values

In []: # Using Sklearn’s simple imputer

from sklearn.impute import SimpleImputer

import numpy as np

my_imputer = SimpleImputer(missing_values=np.NaN, strategy='mean')

nfl_data['yacWPA'] = my_imputer.fit_transform(nfl_data[['yacWPA']])

Fill in missing values with imputation

• Strategy = mean

Date GameID ... yacWPA Season

0 2009-09-10 2009091000 ... NaN 2009

1 2009-09-10 2009091000 ... 0.03689896441538476 2009

2 2009-09-10 2009091000 ... NaN 2009

3 2009-09-10 2009091000 ... -0.1562385319864913 2009

4 2009-09-10 2009091000 ... NaN 2009

Date GameID ... yacWPA Season

0 2009-09-10 2009091000 ... -0.010492 2009

1 2009-09-10 2009091000 ... 0.03689896441538476 2009

2 2009-09-10 2009091000 ... -0.010492 2009

3 2009-09-10 2009091000 ... -0.1562385319864913 2009

4 2009-09-10 2009091000 ... -0.010492 2009

nfl_data.head()

Before imputation

After imputation

• Methods for removing outliers on each feature independently:

– Interquartile Range (IQR) method

• Outliers are considered data points:

– below Q1 – 1.5*IQR

– above Q3 + 1.5*IQR

Removing outliers

import seaborn as sns

import matplotlib.pyplot as plt

df2 = pd.DataFrame({'age': [18, 19, 44, 20, 21, 22, 18, 23, 9, 28, 23, 24, 22, 34, 3, 22, 24, 22, 23,

21, 35, 20, 24]})

plt.subplot(1,2,1)

sns.lineplot(data=df2, y=df2['age'], x=df2.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

Q1 = df2['age'].quantile(0.25)

Q3 = df2['age'].quantile(0.75)

IQR = Q3-Q1

maximum = Q3 + 1.5*IQR

minimum = Q1 - 1.5*IQR

df3 = df2[(df2['age'] > minimum) & (df2['age'] < maximum)]

plt.subplot(1,2,2)

sns.lineplot(data=df3, y=df3['age'], x=df3.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

Q1 – 1.5*IQR Q3 + 1.5*IQR

Outliers removed

After outlier removalInitial dataframe

Dataframe displot

Removing outliers

– Mean (μ) and Standard Deviation (σ) method

• For features that follow the normal distribution

• Outliers are considered data points:

– below μ – 3*σ

– above μ + 3*σ

mean = df2['age'].mean()

std = df2['age'].std()

maximum = mean + 3*std

minimum = mean - 3*std

df4 = df2[(df2['age'] > minimum) & (df2['age'] < maximum)]

plt.subplot(1,2,2)

sns.lineplot(data=df4, y=df4['age'], x=df4.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

After outlier removalInitial dataframe

No outliers removed

here

Removing outliers

– Median and Median Absolute Deviation (mad) method

• Replaces the mean and standard deviation

with more robust statistics such as the median

and median absolute deviation

• Outliers are considered data points:

– below median – 3*mad

– above median + 3*mad

import scipy as sp

median = df2['age'].median()

mad = sp.stats.median_abs_deviation(df2['age'])

maximum = median + 3*mad

minimum = median - 3*mad

df4 = df2[(df2['age'] > minimum) & (df2['age'] < maximum)]

plt.subplot(1,2,2)

sns.lineplot(data=df4, y=df4['age'], x=df4.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

After outlier removalInitial dataframe

Outliers removed

𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛 𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛

Step 1: Find the median.

Step 2: Subtract the median from each x-value using the

formula |xi – median|.

Step 3: find the median of the absolute differences.

Mean/std vs Median/mad

• Mean and std are highly affected by outliers

– All values (including outliers) are used to calculate the mean and std

• Median and MAD are not highly affected by outliers

– Outlier changes only center value(s) which are used to calculate the median

• Example:

– dataset: {2,3,5,6,9}

• mean = 5, std = 2.738, median = 5, mad = 2

– Add outlier value 1000 to dataset

– dataset: {2, 3, 5, 6, 9, 1000}

• mean = 170.83, std = 406.21, median = (5+6)/2 = 5.5, mad = 3

– The outlier

• increases mean by 165.83 and std by 403.472

• increases median by 0.5 and mad by 1

Encoding categorical data

• Machine learning models require all input and output variables to be

numerical

• Categorical data must be encoded to numbers

• Popular techniques:

– Label Encoding or Ordinal Encoding

– One-Hot Encoding

– Dummy Variable Encoding

– Effect Encoding

– Bin counting

– Feature Hashing

• Scikit-learn lib involves a few encoders but category_encoders lib has

more with useful properties conda install -c conda-forge category_encoders

(website: http://contrib.scikit-learn.org/category_encoders)

http://contrib.scikit-learn.org/category_encoders

Label or Ordinal Encoding

• We use this categorical data encoding technique when the

categorical feature is ordinal (with natural, ordered values)

• In this case, retaining the order is important.

• Encoding should reflect the sequence

• Therefore, each label (or category value) is converted into an

integer value

Natural order:

'High school':1

'Diploma':2

'Bachelors':3

'Masters':4

'Phd':5

Label or Ordinal Encoding
import category_encoders as ce

import pandas as pd

df=pd.DataFrame(

{'Degree':['High school', 'Masters', 'Diploma',

'Bachelors', 'Bachelors', 'Masters', 'Phd', 'High

school', 'High school']})

#Original data

df

create object of Ordinal encoding

ordinal_encoder= ce.OrdinalEncoder(return_df=True,

mapping=[{'col':'Degree','mapping':{'None':0,'High

school':1,'Diploma':2,'Bachelors':3,'Masters':4,

'Phd':5}}])

#fit and transform data

df['Ordinal'] =

ordinal_encoder.fit_transform(df['Degree'])

df

Note: If no mapping is given, order is automatically chosen by the encoder

Note: labels with high

ordinal values possess

higher “weight” and may

be considered of higher

importance

One-Hot Encoding

• We use this categorical data encoding technique when the features

are nominal (do not have any order)

• For each label of a categorical feature, we create a new feature

(column)

• Each label is mapped with a binary feature containing either 0 or 1

– 0 represents the absence, and 1 represents the presence of that category

value

• These newly created binary features are known as Dummy

variables

• The number of dummy variables depends on the labels (categories)

present in the categorical variable

One-Hot Encoding
Create object for One-hot encoding

onehot_encoder=ce.OneHotEncoder(cols=['Degree'],handle_unknown='return_nan', return_df=True,

use_cat_names=True)

#fit and transform data

df_onehot = onehot_encoder.fit_transform(df)

df_onehot

Dummy variables

Dummy Variable Encoding

• The one-hot encoding creates one binary feature for each category

➔ this representation includes redundancy

– For example, if we have a feature namely “color” with three labels (blue,

green, red), in one-hot encoding we know that [1, 0, 0] represents “blue” and

[0, 1, 0] represents “green” but it is redundant to use the (third) binary

variable to represent “red“ as [0, 0, 1] => instead we can represent 3 labels

with two variables: [1, 0] for “blue”, [0, 1] for “green” and [0, 0] for “red”

• We can eliminate one binary feature

• This is called a dummy variable encoding, and always represents N

labels (categories) with N-1 binary variables.

Dummy Variable Encoding
df_dummy = pd.get_dummies(df, drop_first=True)

df_dummy

Dummy variables

Drawbacks of One-Hot & Dummy Encoding

• If there are multiple labels (categories) in a feature ➔ we need a

similar number of dummy variables to encode the data

– For example, a feature with 30 different values (labels) will require 29-30

new dummy variables for coding

• If there are multiple categorical features in the dataset we will end

with a high number of binary features

• Due to the massive increase in the dataset, coding slows down the

learning of the model along with deteriorating the overall

performance that ultimately makes the model computationally

expensive.

Cyclical feature encoding

• When dealing with time-dependent data (e.g. months, days, hours)

it’s important to encode the properties of time properly

– We can decompose datetime string to a set of new features: month, day of

the month (1, 2, .. 31), hour, minute, day (Sun, Mon, … Sat)

• The numerical values of each column distort the notion of proximity, i.e. in the hour

feature, midnight is represented by 0 and eleven (PM) in the evening is represented by

23 => large difference in weights

– Cyclical encoding: a better way is to represent time of day as a point on the

unit circle, using sine and cosine transformation

data['hour_sin'] = np.sin(2 * np.pi * data['hour']/23.0)

data['hour_cos'] = np.cos(2 * np.pi * data['hour']/23.0)

11 PM is close to 12

midnight in terms of

sin and cos

Data Transformation: Scaling data

• Feature rescaling

– Majority of clustering / classification algorithms use the notion of distance

(e.g. Euclidean) between 2 points

– Example

• Classify houses with 2 features

• 𝑥1 = 𝑠𝑖𝑧𝑒 0 − 2000𝑚2

• 𝑥2 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑑𝑟𝑜𝑜𝑚𝑠 1 − 5

• 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋1, 𝑋2 = 523 − 127 2 + 4 − 2 2

• Distance is governed by features having boarder range of values

– When distance is used by algorithms make sure features are on a similar

scale

– Target value (to be predicted) is not necessary to be scaled

𝑋 =
523 4
127 2
25 1

Feature x1 with high

magnitudes weights a lot

more in the distance

calculations than feature

x2 with low magnitudes

Data Transformation: Scaling data

• Feature rescaling

– Some examples of algorithms where feature scaling matters are:

• k-nearest neighbors using Euclidean distance – classification algorithm

• k-means using Euclidean distance – clustering algorithm

• logistic regression, SVMs, perceptrons, neural networks etc.

– if you are using gradient descent/ascent-based optimization, otherwise some weights will

update much faster than others

• linear discriminant analysis (LDA), principal component analysis (PCA)

– you want to find directions of maximizing the variance (under the constraints that those

directions/eigenvectors/principal components are orthogonal)

– Decision trees and ensembles of trees (bagging like RandomForest,

boosting) are unaffected by the scale of feature variables

Data Transformation: Scaling data

• Feature rescaling

– Rescale each feature individually into a given range, e.g. [0, 1]

– Scikit-learn module: MinMaxScaler or MaxAbsScaler

• MinMaxScaler: Transforms features by scaling each feature to a given range (xmin → xmax).

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

𝑥 =
4
3
7

 13
 2
 8

, 𝑥𝑖,𝑗,𝑟𝑒𝑠𝑐 =
𝑥𝑖,𝑗 − m𝑖𝑛(𝑥𝑗)

max 𝑥𝑗 − min(𝑥𝑗)
⇒ 𝑥𝑟𝑒𝑠𝑐 =

0.25
0
1

1
0

0.55

from sklearn.preprocessing import MinMaxScaler

df = pd.DataFrame({'A': [4, 3, 7], 'B': [13, 2, 8] })

create the scaler object

scaler = MinMaxScaler(feature_range=(0, 1))

train the scaler (find min and max)

scaler.fit(df)

scale the dataset (apply the transformation)

minMaxRescaledX = scaler.transform(df)

print(minMaxRescaledX)

minMaxRescaledX =

scaler.fit_transform(df)

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.htm
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

Data Transformation: Scaling data

StandardScaler

• Feature standardization

– Rescales each feature individually to make values have zero mean 𝜇 = 0

and unit variance 𝜎2 = 1

– Centers data around zero

• Not recommended for sparse data: destroys sparseness

– Useful for algorithms such as the SVM (RBF kernel)

– Scikit-learn module: StandardScaler

𝑥 =
4
3
7

 13
 2
 8

, 𝑥𝑖,𝑗,𝑠𝑡𝑑 =
𝑥𝑖,𝑗 − m𝑒𝑎𝑛(𝑥𝑗)

𝜎
⇒ 𝑥𝑠𝑡𝑑 =

−0.39
−0.98
1.37

1.86

−1.226
0.07

from sklearn.preprocessing import StandardScaler

df = pd.DataFrame({'A': [4, 3, 7], 'B': [13, 2, 8] })

scaler = StandardScaler()

train the standardizer (find mean, std) and standardize the dataset

standardRescaledX = scaler.fit_transform(df)

print(standardRescaledX)

Assumes that the feature distribution

fits the Gaussian distribution (bell

curve) with a well-behaved mean and

standard deviation. You can still

standardize your data if this

expectation is not met, but you may not

get reliable results.

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

Data Transformation: Scaling data

• Feature standardization

– When data contains outliers, Standard Scaler can be often mislead since

mean value and variance can be influenced by outliers

• MinMaxScaler is sensitive to the presence of outliers as well

– Rescales each feature individually to make values have zero median

(median=0) and unit interquartile range (IQR=1)

– Centers data around zero

– Scikit-learn module: RobustScaler

Compare the effect of different scalers on data with outliers

from sklearn.preprocessing import RobustScaler

df = pd.DataFrame({'A': [4, 3, 7], 'B': [13, 2, 8] })

rscaler = RobustScaler().fit(df)

train the standardizer (find median, quantiles) and standardize the dataset

robustRescaledX = rscaler.fit_transform(df)

print(robustRescaledX)

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#sphx-glr-auto-examples-preprocessing-plot-all-scaling-py

When to normalize or standardize?

• At the end of the day, the choice of using normalization (MinMax

scaler), or standardization (Standard scaler / Robust scaler) will

depend on your problem and the machine learning algorithm you

are using

• There is no hard and fast rule to tell you when to scale your features

• You can always start by fitting (training) your machine learning

model to (a) raw, (b) normalized and (c) standardized data and

comparing the performance of all models to see which technique

achieves the best results in terms of prediction performance

• Scaling of target variable is generally not required

Data Transformation: Scaling data

• Normalize observations

– Normalize each observation (row) independently of other rows so that its

norm (I1 or I2) equals 1

– Useful for sparse datasets (lots of zeros)

– Common operation for text classification or clustering

• dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and

is the base similarity metric for the Vector Space Model

– Scikit-learn module: Normalizer

𝑥 =
4
3
7

 13
 2
 8

, 𝑥𝑖,𝑗,𝑛𝑜𝑟𝑚 =
𝑥𝑖,𝑗

σ𝑘=0
𝑛 𝑥𝑖,𝑘

2

⇒ 𝑥𝑛𝑜𝑟𝑚 =
0.29
0.83
0.66

 0.96
 0.55
 0.75

0.292 + 0.962 = 1

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html

Data Transformation: Unskewing data

• Data is skewed when its distribution curve is asymmetrical as

compared to a normal distribution curve that is perfectly symmetrical

• Skewness is the measure of the asymmetry

– The skewness for a gaussian or normal distribution is 0

Left / negative skew:

Long tail is on the left /

negative side of the

peak

Right / positive skew:

Long tail is on the right

/ positive side of the

peak

No skew

(symmetrical

distribution)

Mean

Median Median

Mean

Median

Mean

Effects of skewed data

• Skewness of (an input or target) variable may degrade the

predictive model’s ability to predict values towards the long tail side

– A regression model for predicting house sale prices or using house sale

price as input feature (using the above dataset) will be trained on a much

larger number of moderately priced houses and will be less likely to

successfully predict the price for the most expensive houses

Right skewed: there is a

minority of very large

values

Distribution of the house

sale prices from Kaggle’s

House Price Competition

Unskewing transformations

• When removing skewness, transformations are attempting to change

the shape of the distribution; to make it symmetric (Gaussian)

– The reason is simply that if the dataset can be transformed to be statistically

close enough to a Gaussian dataset, some machine learning algorithms such

as Linear Regression, Gaussian Naïve Bayes are able to achieve better

predictive performance (see Lab 8 for more info)

– However, other machine learning models e.g. decision trees and ensembles

of trees (bagging, boosting) are not affected by skewness (see Lab 8 for more

info)

• Unskewing transformations are recommended to be applied on

highly-skewed variables (input features and target variable)

• Min-max scaler, standard scaler and robust scaler do not change the

skew (shape) of the distribution; other techniques are needed

https://www.cs.ucy.ac.cy/courses/DSC510/labs/Lab6_scaling_vs_unskewing.ipynb
https://www.cs.ucy.ac.cy/courses/DSC510/labs/Lab6_scaling_vs_unskewing.ipynb

Unskewing transformations

• Square Root (SQRT) transformation

– can work well on positively skewed continuous data:

• Log(arithmic) transformation

– one of the most popular transformations to
deal with skewed data: np.log(df.column)

– Hint: if the original data does not follow or

approximate log-normal distribution, then log

transformation does remove or reduce

skewness

• Boxcox & Yeo-Johnson transformations
• Box-Cox procedure can only be

applied to values that is strictly positive

• Yeo-Johnson can be applied to both

positive and negative values

Log normal distribution:

a positively skewed

distribution

import numpy as np

np.sqrt(df.column)

from scipy.stats import boxcox

df['bc_col'] = boxcox(df['col'])

from scipy.stats import yeojohnson

df['yj_col'] = yeojohnson (df['col'])

Unskewing transformations: Examples

• Pandas .skew() method can be used to measure skewness of data

• Source code and results are available in .ipynb file in course website

• A quite descriptive document on skewness can be found here

Original SalePrice column

Skewness: 1.8828757

SQRT transformation

Skewness: 0.9431527

LOG transformation

Skewness: 0.1213351

BoxCox transformation

Skewness: -0.0086529

YeoJohnson transform

Skewness: -0.0086536

https://www.analyticsvidhya.com/blog/2020/07/what-is-skewness-statistics/

Resampling data

• Resampling involves changing the frequency of time series

observations

• Two types of resampling are:

– Upsampling: Where you increase the frequency of the samples, such as from

minutes to seconds

– Downsampling: Where you decrease the frequency of the samples, such as

from minutes to hours

• Resampling may be required if:

– data is not available at the same frequency that you want to make predictions

• For example, you may have daily data and want to predict a monthly problem. So you

need to downsample it to monthly data prior developing your model

– there is an extremely high number of observations that needs to be

diminished so as to speedup both EDA and ML algorithms execution time

• Need for downsampling

Resampling data – Example

• Shampoo dataset: describes the monthly number of sales of

shampoo over a 3-year period (2001 to 2003) – 36 observations

• Load dataset

from pandas import read_csv

from datetime import datetime

shampoo_df = read_csv('shampoo.csv')

print(shampoo_df.head())

convert Month feature (e.g. from 1-01 20 2001-01-01)

shampoo_df['Month'] = shampoo_df['Month'].map(lambda m: datetime.strptime('200'+m, '%Y-%m'))

dataframe must have a datetime-like index in order to use resample function

set Month feature as index

shampoo_df = shampoo_df.set_index('Month')

print(shampoo_df.head())

https://cs.ucy.ac.cy/courses/EPL448/labs/LAB05/shampoo.csv

Resampling data – Example
plt.figure(1,figsize=(15,4))

sns.lineplot(data=shampoo_df, x=shampoo_df.index, y=shampoo_df.Sales)

plt.title('Original dataset')

plt.show()

• Resample by day

Resampling data – Upsampling

forward fill

daily=shampoo_df.resample('D').ffill()

plt.figure(1,figsize=(15,4))

sns.lineplot(data=daily, x=daily.index, y=daily.Sales)

plt.title('Forward filling')

plt.show()

print(daily.head())

Resampling can be performed by:

second (‘S’), minute (‘T’), hour (‘H’),

day (‘D’), week (‘W’), month (‘M’),

quarter (‘Q’), year (‘Y’)

Forward-filling imputed missing values

using the last observed value.

Resampling data – Upsampling filling strategies

.ffill([limit]) Forward fill the values.

.backfill([limit]) Backward fill the new missing values in the

resampled data.

.bfill([limit]) Backward fill the new missing values in the

resampled data.

.pad([limit]) Forward fill the values.

.nearest([limit]) Resample by using the nearest value.

.fillna(method[, limit]) Fill missing values introduced by upsampling.

.asfreq([fill_value]) Return the values at the new freq, essentially a

reindex.

.interpolate([method, axis, limit, ...]) Interpolate values according to different methods.

https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.ffill.html#pandas.core.resample.Resampler.ffill
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.backfill.html#pandas.core.resample.Resampler.backfill
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.bfill.html#pandas.core.resample.Resampler.bfill
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.pad.html#pandas.core.resample.Resampler.pad
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.nearest.html#pandas.core.resample.Resampler.nearest
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.fillna.html#pandas.core.resample.Resampler.fillna
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.asfreq.html#pandas.core.resample.Resampler.asfreq
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.interpolate.html#pandas.core.resample.Resampler.interpolate

• Resample by day, filling by interpolation

Resampling data – Upsampling

linear interpolation
daily=shampoo_df.resample('D').interpolate(method='linear')

plt.figure(1,figsize=(15,4))

sns.lineplot(data=daily, x=daily.index, y=daily.Sales)

plt.title('Linear interpolation')

plt.show()

spline interpolation
daily=shampoo_df.resample('D').interpolate(method='spline', order=2)

plt.figure(1,figsize=(15,4))

sns.lineplot(data=daily, x=daily.index, y=daily.Sales)

plt.title('Spline interpolation (order=2)')

plt.show()

Resampling data – Downsampling

• Resample by quarter, aggregate by sum and mean

sum aggregation
quarterly=shampoo_df.resample('Q').sum()

plt.figure(1,figsize=(15,4))

sns.lineplot(data=quarterly, x=quarterly.index,

y=quarterly.Sales)

plt.title('Quarterly (sum)')

plt.show()

mean aggregation
quarterly=shampoo_df.resample('Q').mean()

plt.figure(1,figsize=(15,4))

sns.lineplot(data=quarterly, x=quarterly.index, y=quarterly.Sales)

plt.title('Quarterly (mean)')

plt.show()

Resampling data – Downsampling aggregation strategies

.first([_method, min_count]) Compute first of group values.

.last([_method, min_count]) Compute last of group values.

.max([_method, min_count]) Compute max of group values.

.mean([_method]) Compute mean of groups, excluding missing values.

.median([_method]) Compute median of groups, excluding missing

values.

.min([_method, min_count]) Compute min of group values.

.prod([_method, min_count]) Compute prod of group values.

.std([ddof]) Compute standard deviation of groups, excluding

missing values.

.sum([_method, min_count]) Compute sum of group values.

.var([ddof]) Compute variance of groups, excluding missing

values.

https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.first.html#pandas.core.resample.Resampler.first
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.last.html#pandas.core.resample.Resampler.last
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.max.html#pandas.core.resample.Resampler.max
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.mean.html#pandas.core.resample.Resampler.mean
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.median.html#pandas.core.resample.Resampler.median
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.min.html#pandas.core.resample.Resampler.min
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.prod.html#pandas.core.resample.Resampler.prod
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.std.html#pandas.core.resample.Resampler.std
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.sum.html#pandas.core.resample.Resampler.sum
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.var.html#pandas.core.resample.Resampler.var

	Slide 1: EPL448: Data Mining on the Web – Lab 6
	Slide 2: Prepare data for machine learning
	Slide 3: Cleaning data
	Slide 4: Cleaning data
	Slide 5: Cleaning data
	Slide 6: Cleaning data
	Slide 7: Missing values manipulation
	Slide 8: Missing values manipulation
	Slide 9: Missing values manipulation
	Slide 10: Drop rows with missing values
	Slide 11: Drop columns with missing values
	Slide 12: Fill in missing values
	Slide 13: Fill in missing values with imputation
	Slide 14: Fill in missing values with imputation
	Slide 15: Removing outliers
	Slide 16: Removing outliers
	Slide 17: Removing outliers
	Slide 18: Mean/std vs Median/mad
	Slide 19: Encoding categorical data
	Slide 20: Label or Ordinal Encoding
	Slide 21: Label or Ordinal Encoding
	Slide 22: One-Hot Encoding
	Slide 23: One-Hot Encoding
	Slide 24: Dummy Variable Encoding
	Slide 25: Dummy Variable Encoding
	Slide 26: Drawbacks of One-Hot & Dummy Encoding
	Slide 27: Cyclical feature encoding
	Slide 28: Data Transformation: Scaling data
	Slide 29: Data Transformation: Scaling data
	Slide 30: Data Transformation: Scaling data
	Slide 31: Data Transformation: Scaling data
	Slide 32: Data Transformation: Scaling data
	Slide 33: When to normalize or standardize?
	Slide 35: Data Transformation: Scaling data
	Slide 36: Data Transformation: Unskewing data
	Slide 37: Effects of skewed data
	Slide 38: Unskewing transformations
	Slide 39: Unskewing transformations
	Slide 40: Unskewing transformations: Examples
	Slide 41: Resampling data
	Slide 42: Resampling data – Example
	Slide 43: Resampling data – Example
	Slide 44: Resampling data – Upsampling
	Slide 45: Resampling data – Upsampling filling strategies
	Slide 46: Resampling data – Upsampling
	Slide 47: Resampling data – Downsampling
	Slide 48: Resampling data – Downsampling aggregation strategies

