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Prepare data for machine learning

• Data preparation is the process of gathering, combining, structuring 

and organizing data so it can be used in Exploratory Data Analysis 

(statistical analysis and visualization) and Predictive Modelling

– Gather/combine data: Finding the right data. This can come from databases, 

files (.csv, .json, .txt, .xml) or Rest APIs (web-based apps).

– Preprocess data: Organize your selected data by formatting, cleaning, 

encoding and (re-)sampling.
• Cleaning data is the fixing/deleting/filling in missing data

• Encoding is the conversion of labeled/categorical data into numerical data

• Resampling is about changing the frequency of observations

– Transform data: Transform preprocessed data by engineering features using 

scaling, unskewing, feature selection and feature extraction (next lab) for 

achieving better performance of predictive modelling methods
• Scaling is the process of rescaling or standardizing or normalizing features

• Unskewing is making features’ distribution symmetrical



Cleaning data

• Fixing up formats

– Often when data is coming from various international sources may (a) involve 

mixed formats, and/or (b) not follow the expected numeric syntax 

• decimal separator is dot (need to be replaced if comma)

• there is no thousands separator (need to be removed if any)

• monetary symbols before or after numbers (need to be removed if any)

– Data may not follow the default (expected by Python plots or functions) 

formats

• e.g. dates as integers 20090609231247 instead of the expected format 2009-06-09 

23:12:47 (ISO 8601 format) need to be transformed



Cleaning data

• Deleting missing values

– may delete rows if the number of these rows is relatively small compared to 

the dataset 

• e.g. do not account for more than 10% of all lines

– may delete rows if rows to be deleted are not important

• e.g. do not contain info about a specific category in dataset

– missing ages in some rows may correspond to older and more privacy or conscious users and 

are important in the decision-making process, so cannot be removed

– This is not an easy task, especially if we are not familiar with the dataset

– action can be performed with Pandas dropna(), see next slides



Cleaning data

• Filling in missing values

– For categorical data (e.g. device type, countries) makes sense to create a 

new category ‘unknown’

– For numerical values (e.g. age) makes sense to use:

• Statistical aggregations such as mean or median of either (a) all rows of the column or 

(b) take into account rows belonging to the same category of that of the missing value

• Interpolation: applied on time-series data, see slides about sampling

– Build a predictors to predict a missing value based on columns that do have 

data

• Correcting erroneous values

– For some columns, some values can 

be identified as obviously incorrect

• E.g. find a number in a gender column

• an age column with values below 0 or well over 100 (outliers)



Cleaning data

• Standardizing categories

– When data collected directly from users, especially from text fields →

spelling mistakes, language differences → a given answer may be provided 

in multiple ways

• E.g. country: USA, United States, U.S

• E.g. dates: 1982-10-01, 1/10/1982

– Goal: standardize values to ensure that there is only one version of each 

value



Missing values manipulation

• Missing values are marked as NaN
In [ ]: # Read a dataset with missing values (download zipped dataset from here)

nfl_data = pd.read_csv('NFL Play by Play 2009-2016 (v3).csv', dtype='unicode')

nfl_data.head()

Out[ ]: Date              GameID  ...               yacWPA Season

0  2009-09-10  2009091000  ...                  NaN   2009

1  2009-09-10  2009091000  ...  0.03689896441538476   2009

2  2009-09-10  2009091000  ...                  NaN   2009

3  2009-09-10  2009091000  ...  -0.1562385319864913   2009

4  2009-09-10  2009091000  ...                  NaN   2009

In [ ]: nfl_data.isnull().head()

Out[ ]: Date  GameID  Drive    qtr   down  ...  Win_Prob    WPA  airWPA  yacWPA  Season

0  False   False  False  False   True  ...     False  False    True    True   False

1  False   False  False  False  False  ...     False  False   False   False   False

2  False   False  False  False  False  ...     False  False    True    True   False

3  False   False  False  False  False  ...     False  False   False   False   False

4  False   False  False  False  False  ...     False  False    True    True   False

https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB06/NFL%20Play%20by%20Play%202009-2016%20(v3).zip


Missing values manipulation

• There is a number of methods to deal with missing values in the 

data frame:

df.method() description

dropna() Drop observations (rows) with at least one missing value

dropna(how='all') Drop observations (rows) where all cells is NA

dropna(axis=1) Drop the columns where at least one value is missing

dropna(thresh = 5) Drop rows that contain less than 5 non-missing values

fillna(0) Replace missing values with a specified value

isnull() returns True if the value is missing

notnull() Returns True for non-missing values

IMPORTANT NOTE: All methods return a new DataFrame object unless the inplace parameter is set to True



Missing values manipulation

9

In [ ]: # get the number of missing data points per column; sum True values

missing_values_count = nfl_data.isnull().sum()

# look at the # of missing points in the first ten columns

missing_values_count[0:10]

Out[ ]: Date                0

GameID              0

Drive               0

qtr                 0

down            54218

time              188

TimeUnder           0

TimeSecs          188

PlayTimeDiff      374

SideofField       450

dtype: int64



Drop rows with missing values
In [ ]: # remove all the rows that contain a missing value

nfl_data.dropna()

Out[ ]:

It looks like that's removed all our data! This is because 
every row in our dataset had at least one missing value.



Drop columns with missing values
In [ ]: # remove all columns with at least one missing value

columns_cleaned = nfl_data.dropna(axis=1)

columns_cleaned.head()

Out[ ]: Date      GameID Drive  ... ExPoint_Prob TwoPoint_Prob Season

0  2009-09-10  2009091000     1  ...            0             0   2009

1  2009-09-10  2009091000     1  ...            0             0   2009

2  2009-09-10  2009091000     1  ...            0             0   2009

3  2009-09-10  2009091000     1  ...            0             0   2009

4  2009-09-10  2009091000     1  ...            0             0   2009

[5 rows x 41 columns]

In [ ]: # just how much data did we lose?

print("Columns in original dataset: %d" % nfl_data.shape[1])

print("Columns with na's dropped: %d" % columns_cleaned.shape[1])

Out[ ]: Columns in original dataset: 102 

Columns with na's dropped: 41

nfl_data.dropna(subset=["down", "SideofField"])

We can also define in which columns to look for missing values.



Fill in missing values

• One option we have is to specify what we want the NaN values to 

be replaced with

• Another option is to replace missing values with the first valid value 

comes after it in the same column

– This makes a lot of sense for datasets where the observations have some 

sort of logical order to them

In [ ]: # replace all NA's with 0. the nfl_data dataframe is modified in place

nfl_data.fillna(0, inplace=True)

# replace all NA's with 0 for a specific column

nfl_data['yacWPA'].fillna(0, inplace=True)

In [ ]: # replace all NA's the first valid value that comes after it in the 

same column, then replace all the remaining na’s (if any) with 0

nfl_data.fillna(method = 'bfill', axis=0, inplace=True).fillna(0)



Fill in missing values with imputation

• Imputation fills in the missing value with some number

• Imputed value won't be exactly right in most cases, but it usually 

gives more accurate models than dropping the column entirely

– SimpleImputer takes two arguments such as missing_values and strategy

• Strategy can be set to mean, median, most_frequent, constant (with fill_value argument)

– Numerical missing values: mean, median, most frequent, constant

– Categorical missing values: most frequent, constant

– fit_transform method is invoked on the instance of SimpleImputer to impute 

the missing values

In [ ]: # Using Sklearn’s simple imputer

from sklearn.impute import SimpleImputer

import numpy as np

my_imputer = SimpleImputer(missing_values=np.NaN, strategy='mean')

nfl_data['yacWPA'] = my_imputer.fit_transform(nfl_data[['yacWPA']])



Fill in missing values with imputation

• Strategy = mean

Date      GameID  ...               yacWPA Season

0  2009-09-10  2009091000  ...                  NaN   2009

1  2009-09-10  2009091000  ...  0.03689896441538476   2009

2  2009-09-10  2009091000  ...                  NaN   2009

3  2009-09-10  2009091000  ...  -0.1562385319864913   2009

4  2009-09-10  2009091000  ...                  NaN   2009

Date      GameID  ...               yacWPA Season

0  2009-09-10  2009091000  ...      -0.010492   2009

1  2009-09-10  2009091000  ...  0.03689896441538476   2009

2  2009-09-10  2009091000  ...      -0.010492   2009

3  2009-09-10  2009091000  ...  -0.1562385319864913   2009

4  2009-09-10  2009091000  ...      -0.010492   2009

nfl_data.head()

Before imputation

After imputation



• Methods for removing outliers on each feature independently:

– Interquartile Range (IQR) method

• Outliers are considered data points:

– below Q1 – 1.5*IQR

– above Q3 + 1.5*IQR

Removing outliers

import seaborn as sns

import matplotlib.pyplot as plt

df2 = pd.DataFrame({'age': [18, 19, 44, 20, 21, 22, 18, 23, 9, 28, 23, 24, 22, 34, 3, 22, 24, 22, 23, 

21, 35, 20, 24]})

plt.subplot(1,2,1)

sns.lineplot(data=df2, y=df2['age'], x=df2.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

Q1 = df2['age'].quantile(0.25)

Q3 = df2['age'].quantile(0.75)

IQR = Q3-Q1

maximum = Q3 + 1.5*IQR

minimum = Q1 - 1.5*IQR

df3 = df2[ (df2['age'] > minimum) & (df2['age'] < maximum) ]

plt.subplot(1,2,2)

sns.lineplot(data=df3, y=df3['age'], x=df3.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

Q1 – 1.5*IQR Q3 + 1.5*IQR

Outliers removed

After outlier removalInitial dataframe

Dataframe displot



Removing outliers

– Mean (μ) and Standard Deviation (σ) method

• For features that follow the normal distribution

• Outliers are considered data points:

– below μ – 3*σ

– above μ + 3*σ

mean = df2['age'].mean()

std = df2['age'].std()

maximum = mean + 3*std

minimum = mean - 3*std

df4 = df2[ (df2['age'] > minimum) & (df2['age'] < maximum) ]

plt.subplot(1,2,2)

sns.lineplot(data=df4, y=df4['age'], x=df4.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

After outlier removalInitial dataframe

No outliers removed

here



Removing outliers

– Median and Median Absolute Deviation (mad) method

• Replaces the mean and standard deviation 

with more robust statistics such as the median

and median absolute deviation

• Outliers are considered data points:

– below median – 3*mad

– above median + 3*mad

import scipy as sp

median = df2['age'].median()

mad = sp.stats.median_abs_deviation(df2['age'])

maximum = median + 3*mad

minimum = median - 3*mad

df4 = df2[ (df2['age'] > minimum) & (df2['age'] < maximum) ]

plt.subplot(1,2,2)

sns.lineplot(data=df4, y=df4['age'], x=df4.index)

plt.ylim([df2['age'].min(), df2['age'].max()])

After outlier removalInitial dataframe

Outliers removed

𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛 𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛

Step 1: Find the median.

Step 2: Subtract the median from each x-value using the 

formula |xi – median|. 

Step 3: find the median of the absolute differences.



Mean/std vs Median/mad

• Mean and std are highly affected by outliers

– All values (including outliers) are used to calculate the mean and std

• Median and MAD are not highly affected by outliers

– Outlier changes only center value(s) which are used to calculate the median

• Example: 

– dataset: {2,3,5,6,9} 

• mean = 5, std = 2.738, median = 5, mad = 2

– Add outlier value 1000 to dataset

– dataset: {2, 3, 5, 6, 9, 1000}

• mean = 170.83, std = 406.21, median = (5+6)/2 = 5.5, mad = 3

– The outlier

• increases mean by 165.83 and std by 403.472

• increases median by 0.5 and mad by 1



Encoding categorical data

• Machine learning models require all input and output variables to be 

numerical

• Categorical data must be encoded to numbers

• Popular techniques:

– Label Encoding or Ordinal Encoding

– One-Hot Encoding

– Dummy Variable Encoding

– Effect Encoding

– Bin counting

– Feature Hashing

• Scikit-learn lib involves a few encoders but category_encoders lib has 

more with useful properties conda install -c conda-forge category_encoders

(website: http://contrib.scikit-learn.org/category_encoders)

http://contrib.scikit-learn.org/category_encoders


Label or Ordinal Encoding

• We use this categorical data encoding technique when the 

categorical feature is ordinal (with natural, ordered values)

• In this case, retaining the order is important.

• Encoding should reflect the sequence

• Therefore, each label (or category value) is converted into an 

integer value

Natural order: 

'High school':1

'Diploma':2

'Bachelors':3

'Masters':4

'Phd':5



Label or Ordinal Encoding
import category_encoders as ce

import pandas as pd

df=pd.DataFrame(

{'Degree':['High school', 'Masters', 'Diploma', 

'Bachelors', 'Bachelors', 'Masters', 'Phd', 'High 

school', 'High school']})

#Original data

df

# create object of Ordinal encoding

ordinal_encoder= ce.OrdinalEncoder(return_df=True, 

mapping=[{'col':'Degree','mapping':{'None':0,'High 

school':1,'Diploma':2,'Bachelors':3,'Masters':4,

'Phd':5}}])

#fit and transform data

df['Ordinal'] = 

ordinal_encoder.fit_transform(df['Degree'])

df

Note: If no mapping is given, order is automatically chosen by the encoder 

Note: labels with high 

ordinal values possess 

higher “weight” and may 

be considered of higher 

importance



One-Hot Encoding

• We use this categorical data encoding technique when the features 

are nominal (do not have any order)

• For each label of a categorical feature, we create a new feature

(column)

• Each label is mapped with a binary feature containing either 0 or 1 

– 0 represents the absence, and 1 represents the presence of that category 

value

• These newly created binary features are known as Dummy 

variables

• The number of dummy variables depends on the labels (categories) 

present in the categorical variable



One-Hot Encoding
# Create object for One-hot encoding

onehot_encoder=ce.OneHotEncoder(cols=['Degree'],handle_unknown='return_nan', return_df=True, 

use_cat_names=True)

#fit and transform data

df_onehot = onehot_encoder.fit_transform(df)

df_onehot

Dummy variables



Dummy Variable Encoding

• The one-hot encoding creates one binary feature for each category 

➔ this representation includes redundancy

– For example, if we have a feature namely “color” with three labels (blue, 

green, red), in one-hot encoding we know that [1, 0, 0] represents “blue” and 

[0, 1, 0] represents “green” but it is redundant to use the (third) binary 

variable to represent “red“ as [0, 0, 1] => instead we can  represent 3 labels 

with two variables: [1, 0] for “blue”, [0, 1] for “green” and [0, 0] for “red”

• We can eliminate one binary feature 

• This is called a dummy variable encoding, and always represents N 

labels (categories) with N-1 binary variables.



Dummy Variable Encoding
df_dummy = pd.get_dummies(df, drop_first=True)

df_dummy

Dummy variables



Drawbacks of One-Hot & Dummy Encoding

• If there are multiple labels (categories) in a feature ➔ we need a 

similar number of dummy variables to encode the data

– For example, a feature with 30 different values (labels) will require 29-30 

new dummy variables for coding

• If there are multiple categorical features in the dataset we will end 

with a high number of binary features

• Due to the massive increase in the dataset, coding slows down the 

learning of the model along with deteriorating the overall 

performance that ultimately makes the model computationally 

expensive.



Cyclical feature encoding

• When dealing with time-dependent data (e.g. months, days, hours) 

it’s important to encode the properties of time properly

– We can decompose datetime string to a set of new features: month, day of 

the month (1, 2, .. 31), hour, minute, day (Sun, Mon, … Sat)

• The numerical values of each column distort the notion of proximity, i.e. in the hour 

feature, midnight is represented by 0 and eleven (PM) in the evening is represented by 

23 => large difference in weights

– Cyclical encoding: a better way is to represent time of day as a point on the 

unit circle, using sine and cosine transformation

data['hour_sin'] = np.sin(2 * np.pi * data['hour']/23.0)

data['hour_cos'] = np.cos(2 * np.pi * data['hour']/23.0)

11 PM is close to 12 

midnight in terms of 

sin and cos



Data Transformation: Scaling data

• Feature rescaling

– Majority of clustering / classification algorithms use the notion of distance 

(e.g. Euclidean) between 2 points

– Example

• Classify houses with 2 features

• 𝑥1 = 𝑠𝑖𝑧𝑒 0 − 2000𝑚2

• 𝑥2 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑑𝑟𝑜𝑜𝑚𝑠 1 − 5

• 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋1, 𝑋2 = 523 − 127 2 + 4 − 2 2

• Distance is governed by features having boarder range of values

– When distance is used by algorithms make sure features are on a similar 

scale

– Target value (to be predicted) is not necessary to be scaled

𝑋 =
523 4
127 2
25 1

Feature x1 with high 

magnitudes weights a lot 

more in the distance 

calculations than feature 

x2 with low magnitudes



Data Transformation: Scaling data

• Feature rescaling

– Some examples of algorithms where feature scaling matters are:

• k-nearest neighbors using Euclidean distance – classification algorithm

• k-means using Euclidean distance – clustering algorithm 

• logistic regression, SVMs, perceptrons, neural networks etc.

– if you are using gradient descent/ascent-based optimization, otherwise some weights will 

update much faster than others

• linear discriminant analysis (LDA), principal component analysis (PCA)

– you want to find directions of maximizing the variance (under the constraints that those 

directions/eigenvectors/principal components are orthogonal)

– Decision trees and ensembles of trees (bagging like RandomForest, 

boosting) are unaffected by the scale of feature variables



Data Transformation: Scaling data

• Feature rescaling

– Rescale each feature individually into a given range, e.g. [0, 1]

– Scikit-learn module: MinMaxScaler or MaxAbsScaler

• MinMaxScaler: Transforms features by scaling each feature to a given range (xmin → xmax).

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

𝑥 =
4
3
7

 13
 2
 8

, 𝑥𝑖,𝑗,𝑟𝑒𝑠𝑐 =
𝑥𝑖,𝑗 − m𝑖𝑛(𝑥𝑗)

max 𝑥𝑗 − min(𝑥𝑗)
⇒ 𝑥𝑟𝑒𝑠𝑐 =

0.25
0
1

1
0

0.55

from sklearn.preprocessing import MinMaxScaler

df = pd.DataFrame({'A': [4, 3, 7], 'B': [13, 2, 8] })

# create the scaler object

scaler = MinMaxScaler(feature_range=(0, 1))

# train the scaler (find min and max)

scaler.fit(df)

# scale the dataset (apply the transformation)

minMaxRescaledX = scaler.transform(df)

print(minMaxRescaledX)

minMaxRescaledX = 

scaler.fit_transform(df)

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.htm
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing


Data Transformation: Scaling data

StandardScaler

• Feature standardization

– Rescales each feature individually to make values have zero mean 𝜇 = 0  

and unit variance 𝜎2 = 1

– Centers data around zero

• Not recommended for sparse data: destroys sparseness

– Useful for algorithms such as the SVM (RBF kernel)

– Scikit-learn module: StandardScaler

𝑥 =
4
3
7

 13
 2
 8

, 𝑥𝑖,𝑗,𝑠𝑡𝑑 =
𝑥𝑖,𝑗 − m𝑒𝑎𝑛(𝑥𝑗)

𝜎
⇒ 𝑥𝑠𝑡𝑑 =

−0.39
−0.98
1.37

 
1.86

−1.226
0.07

from sklearn.preprocessing import StandardScaler

df = pd.DataFrame({'A': [4, 3, 7], 'B': [13, 2, 8] })

scaler = StandardScaler()

# train the standardizer (find mean, std) and standardize the dataset

standardRescaledX = scaler.fit_transform(df)

print(standardRescaledX)

Assumes that the feature distribution 

fits the Gaussian distribution (bell 

curve) with a well-behaved mean and 

standard deviation. You can still 

standardize your data if this 

expectation is not met, but you may not 

get reliable results.

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html


Data Transformation: Scaling data

• Feature standardization

– When data contains outliers, Standard Scaler can be often mislead since 

mean value and variance can be influenced by outliers

• MinMaxScaler is sensitive to the presence of outliers as well

– Rescales each feature individually to make values have zero median 

(median=0) and unit interquartile range (IQR=1)

– Centers data around zero

– Scikit-learn module: RobustScaler

Compare the effect of different scalers on data with outliers

from sklearn.preprocessing import RobustScaler

df = pd.DataFrame({'A': [4, 3, 7], 'B': [13, 2, 8] })

rscaler = RobustScaler().fit(df)

# train the standardizer (find median, quantiles) and standardize the dataset

robustRescaledX = rscaler.fit_transform(df)

print(robustRescaledX)

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#sphx-glr-auto-examples-preprocessing-plot-all-scaling-py


When to normalize or standardize?

• At the end of the day, the choice of using normalization (MinMax 

scaler), or standardization (Standard scaler / Robust scaler) will 

depend on your problem and the machine learning algorithm you 

are using

• There is no hard and fast rule to tell you when to scale your features

• You can always start by fitting (training) your machine learning 

model to (a) raw, (b) normalized and (c) standardized data and 

comparing the performance of all models to see which technique 

achieves the best results in terms of prediction performance

• Scaling of target variable is generally not required



Data Transformation: Scaling data

• Normalize observations

– Normalize each observation (row) independently of other rows so that its 

norm (I1 or I2) equals 1

– Useful for sparse datasets (lots of zeros) 

– Common operation for text classification or clustering

• dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and 

is the base similarity metric for the Vector Space Model

– Scikit-learn module: Normalizer

𝑥 =
4
3
7

 13
 2
 8

, 𝑥𝑖,𝑗,𝑛𝑜𝑟𝑚 =
𝑥𝑖,𝑗

σ𝑘=0
𝑛 𝑥𝑖,𝑘

2

⇒ 𝑥𝑛𝑜𝑟𝑚 =
0.29
0.83
0.66

 0.96
 0.55
 0.75

0.292 + 0.962 = 1

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html


Data Transformation: Unskewing data

• Data is skewed when its distribution curve is asymmetrical as 

compared to a normal distribution curve that is perfectly symmetrical

• Skewness is the measure of the asymmetry

– The skewness for a gaussian or normal distribution is 0

Left / negative skew:

Long tail is on the left / 

negative side of the 

peak

Right / positive skew:

Long tail is on the right 

/ positive side of the 

peak

No skew 

(symmetrical 

distribution) 

Mean

Median Median

Mean

Median

Mean



Effects of skewed data

• Skewness of (an input or target) variable may degrade the 

predictive model’s ability to predict values towards the long tail side

– A regression model for predicting house sale prices or using house sale 

price as input feature (using the above dataset) will be trained on a much 

larger number of moderately priced houses and will be less likely to 

successfully predict the price for the most expensive houses

Right skewed: there is a 

minority of very large 

values

Distribution of the house 

sale prices from Kaggle’s 

House Price Competition 



Unskewing transformations

• When removing skewness, transformations are attempting to change 

the shape of the distribution; to make it symmetric (Gaussian)

– The reason is simply that if the dataset can be transformed to be statistically 

close enough to a Gaussian dataset, some machine learning algorithms such 

as Linear Regression, Gaussian Naïve Bayes are able to achieve better 

predictive performance (see Lab 8 for more info)

– However, other machine learning models e.g. decision trees and ensembles 

of trees (bagging, boosting) are not affected by skewness (see Lab 8 for more 

info)

• Unskewing transformations are recommended to be applied on 

highly-skewed variables (input features and target variable)

• Min-max scaler, standard scaler and robust scaler do not change the 

skew (shape) of the distribution; other techniques are needed

https://www.cs.ucy.ac.cy/courses/DSC510/labs/Lab6_scaling_vs_unskewing.ipynb
https://www.cs.ucy.ac.cy/courses/DSC510/labs/Lab6_scaling_vs_unskewing.ipynb


Unskewing transformations

• Square Root (SQRT) transformation

– can work well on positively skewed continuous data: 

• Log(arithmic) transformation

– one of the most popular transformations to 
deal with skewed data: np.log(df.column)

– Hint: if the original data does not follow or 

approximate log-normal distribution, then log 

transformation does remove or reduce 

skewness

• Boxcox & Yeo-Johnson transformations
• Box-Cox procedure can only be 

applied to values that is strictly positive

• Yeo-Johnson can be applied to both 

positive and negative values

Log normal distribution: 

a positively skewed 

distribution

import numpy as np

np.sqrt(df.column)

from scipy.stats import boxcox

df['bc_col'] = boxcox(df['col'])

from scipy.stats import yeojohnson

df['yj_col'] = yeojohnson (df['col'])



Unskewing transformations: Examples

• Pandas .skew() method can be used to measure skewness of data

• Source code and results are available in .ipynb file in course website

• A quite descriptive document on skewness can be found here

Original SalePrice column

Skewness: 1.8828757

SQRT transformation

Skewness: 0.9431527

LOG transformation

Skewness: 0.1213351

BoxCox transformation

Skewness: -0.0086529

YeoJohnson transform

Skewness: -0.0086536

https://www.analyticsvidhya.com/blog/2020/07/what-is-skewness-statistics/


Resampling data 

• Resampling involves changing the frequency of time series 

observations

• Two types of resampling are:

– Upsampling: Where you increase the frequency of the samples, such as from 

minutes to seconds

– Downsampling: Where you decrease the frequency of the samples, such as 

from minutes to hours

• Resampling may be required if:

– data is not available at the same frequency that you want to make predictions

• For example, you may have daily data and want to predict a monthly problem. So you 

need to downsample it to monthly data prior developing your model

– there is an extremely high number of observations that needs to be 

diminished so as to speedup both EDA and ML algorithms execution time

• Need for downsampling



Resampling data – Example

• Shampoo dataset: describes the monthly number of sales of 

shampoo over a 3-year period (2001 to 2003) – 36 observations

• Load dataset

from pandas import read_csv

from datetime import datetime

shampoo_df = read_csv('shampoo.csv')

print(shampoo_df.head())

# convert Month feature (e.g. from 1-01 20 2001-01-01)

shampoo_df['Month'] = shampoo_df['Month'].map(lambda m: datetime.strptime('200'+m, '%Y-%m'))

# dataframe must have a datetime-like index in order to use resample function

# set Month feature as index

shampoo_df = shampoo_df.set_index('Month')

print(shampoo_df.head())

https://cs.ucy.ac.cy/courses/EPL448/labs/LAB05/shampoo.csv


Resampling data – Example
plt.figure(1,figsize=(15,4))

sns.lineplot(data=shampoo_df, x=shampoo_df.index, y=shampoo_df.Sales)

plt.title('Original dataset') 

plt.show()



• Resample by day

Resampling data – Upsampling

# forward fill

daily=shampoo_df.resample('D').ffill()

plt.figure(1,figsize=(15,4))

sns.lineplot(data=daily, x=daily.index, y=daily.Sales)

plt.title('Forward filling') 

plt.show()

print(daily.head())

Resampling can be performed by: 

second (‘S’), minute (‘T’), hour (‘H’), 

day (‘D’), week (‘W’), month (‘M’), 

quarter (‘Q’), year (‘Y’)

Forward-filling imputed missing values 

using the last observed value.



Resampling data – Upsampling filling strategies

.ffill([limit]) Forward fill the values.

.backfill([limit]) Backward fill the new missing values in the 

resampled data.

.bfill([limit]) Backward fill the new missing values in the 

resampled data.

.pad([limit]) Forward fill the values.

.nearest([limit]) Resample by using the nearest value.

.fillna(method[, limit]) Fill missing values introduced by upsampling.

.asfreq([fill_value]) Return the values at the new freq, essentially a 

reindex.

.interpolate([method, axis, limit, ...]) Interpolate values according to different methods.

https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.ffill.html#pandas.core.resample.Resampler.ffill
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.backfill.html#pandas.core.resample.Resampler.backfill
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.bfill.html#pandas.core.resample.Resampler.bfill
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.pad.html#pandas.core.resample.Resampler.pad
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.nearest.html#pandas.core.resample.Resampler.nearest
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.fillna.html#pandas.core.resample.Resampler.fillna
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.asfreq.html#pandas.core.resample.Resampler.asfreq
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.interpolate.html#pandas.core.resample.Resampler.interpolate


• Resample by day, filling by interpolation

Resampling data – Upsampling

# linear interpolation
daily=shampoo_df.resample('D').interpolate(method='linear')

plt.figure(1,figsize=(15,4))

sns.lineplot(data=daily, x=daily.index, y=daily.Sales)

plt.title('Linear interpolation')

plt.show()

# spline interpolation
daily=shampoo_df.resample('D').interpolate(method='spline', order=2)

plt.figure(1,figsize=(15,4))

sns.lineplot(data=daily, x=daily.index, y=daily.Sales)

plt.title('Spline interpolation (order=2)')

plt.show()



Resampling data – Downsampling

• Resample by quarter, aggregate by sum and mean

# sum aggregation
quarterly=shampoo_df.resample('Q').sum()

plt.figure(1,figsize=(15,4))

sns.lineplot(data=quarterly, x=quarterly.index, 

y=quarterly.Sales)

plt.title('Quarterly (sum)')

plt.show()

# mean aggregation
quarterly=shampoo_df.resample('Q').mean()

plt.figure(1,figsize=(15,4))

sns.lineplot(data=quarterly, x=quarterly.index, y=quarterly.Sales)

plt.title('Quarterly (mean)')

plt.show()



Resampling data – Downsampling aggregation strategies

.first([_method, min_count]) Compute first of group values.

.last([_method, min_count]) Compute last of group values.

.max([_method, min_count]) Compute max of group values.

.mean([_method]) Compute mean of groups, excluding missing values.

.median([_method]) Compute median of groups, excluding missing 

values.

.min([_method, min_count]) Compute min of group values.

.prod([_method, min_count]) Compute prod of group values.

.std([ddof]) Compute standard deviation of groups, excluding 

missing values.

.sum([_method, min_count]) Compute sum of group values.

.var([ddof]) Compute variance of groups, excluding missing 

values.

https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.first.html#pandas.core.resample.Resampler.first
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.last.html#pandas.core.resample.Resampler.last
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.max.html#pandas.core.resample.Resampler.max
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.mean.html#pandas.core.resample.Resampler.mean
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.median.html#pandas.core.resample.Resampler.median
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.min.html#pandas.core.resample.Resampler.min
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.prod.html#pandas.core.resample.Resampler.prod
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.std.html#pandas.core.resample.Resampler.std
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.sum.html#pandas.core.resample.Resampler.sum
https://pandas.pydata.org/docs/reference/api/pandas.core.resample.Resampler.var.html#pandas.core.resample.Resampler.var
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