EPL448: Data Mining
on the Web — Lab 9 |y

Computer Science

[TaUuAoc¢ AvTwviou
[‘pageio: B109, ©EEO1




Classification

« Supervised Machine Learning (ML) process of predicting the class
or category of data based on predefined classes of data that have
been ‘labeled’

- Labeled data is data observations that have already been classified
« Unlabeled data is data observations that have not yet been labeled




Types of Classification

« Binary Classification

— process of classification in which input data observations are being classified
Into one of two discrete classes

— For example, a medical process which classifies patients into those that
have a specific disease versus those that do not (e.g. COVID positive vs
COVID negative)

 Multi-class Classification

— Process of classification in which input data observations are being
classified into one of three or more classes

— For example, medical profiling that classifies patients into those with kidney,
liver, lung, or stomach infection symptoms




Classification algorithms

« Popular algorithms used for both binary and multi-class
classification:
— Logistic Regression
— Support Vector Classifier (SVC)
— Multinomial Logistic Regression
— k-Nearest Neighbors (KkNN)
— Decision Tree Classifier
— Gaussian Naive Bayes Classifier
— Stochastic Gradient Descent Classifier
— Linear Discriminant Analysis
— Ensemble algorithms (Random Forest, Gradient Boosting, XGBoost)




Is rescaling/unskewing needed?

» Feature scaling is recommended prior training classification
algorithms that use the notion of (Euclidean) distance between data
points to determine their similarity (whether they belong to the same
class or category) such as:

— k-Nearest Neighbors (KkNN)

Normalization (MinMax scaler) is usually more effective than standardization for KNN
because all features are mapped to the same range of values (e.g. between 0 and 1)

— Support Vector Classifier (SVC)

Standardization (Standard or Robust scaler) is usually more effective when the rbf kernel
IS used in SVC because rbf assumes that features are centered around zero

— Stochastic Gradient Descent Classifier (SGDClassifier)
Standardization (Standard or Robust scaler) is usually effective




Is rescaling/unskewing needed?

« Unskewing techniques (e.g. BoxCox, Sqrt, Log) are generally
recommended on highly skewed features. In a related study?, the
use of BoxCox transformation has been shown to increase the
accuracy of various classifiers (Linear Classifier, KNN, SVC,
Bayesian)

* Rescaling/unskewing of target variable (that includes class/category
values) does not make any sense in classification problems

* There Is no way to know Iin advance if feature rescaling or unskewing
will provide better prediction results. You can always start by fitting
your model to (a) raw, (b) normalized, (c) standardized and (d)
unskewed data and then comparing the prediction performance of
each model

[1] L. Blum, M. Elgendi, C. Menon “Impact of Box-Cox Transformation on Machine-Learning Algorithms®, Frontiers in Artificial Intelligence 5:877569, April 2022



Classification model evaluation metrics

* True Positive (TP): When you predict an observation belongs to a
class and it actually does belong to that class
— Correctly (true) predicted positive class
— A passenger who is classified as COVID positive and is actually positive

* True Negative (TN): When you predict an observation does not
belong to a class and it actually does not belong to that class
— Correctly (true) predicted negative class

— A passenger who is classified as not COVID positive (negative) and is
actually not COVID positive (negative)




Classification model evaluation metrics

 False Positive (FP): When you predict an observation belongs to a
class and it actually does not belong to that class
— Incorrectly (false) predicted positive class

— A passenger who is classified as COVID positive and is actually not COVID
positive (negative)

» False Negative (FN): When you predict an observation does not
belong to a class and it actually does belong to that class
— Incorrectly (false) predicted negative class

— A passenger who is classified as not COVID positive (negative) and is
actually COVID positive




Confusion matrix

A confusion matrix is a table that is often used to describe the
performance of a classification model (or "classifier")

ACTUAL

Covrrectly Predicted _
Incorrecty Predicted
COVID +we passenger '< Positive Negatlve
COVID -pe passenger
Ah +\£E L
=2 A4 + L
4_0
7
—
U )
& .%
Ll T
(2 dd O .
0o % Correcty predicted
Incorrecty COVID -we passenger

predicted COVID
e Passenger as —pe

Ak —\ne




Accuracy

« Accuracy Is one metric which gives the fraction of predictions our
model got right

Number of correct predictions TP+TN
e Accuracy = =

Total number of predictions ~ TP+FP+TN+FN

« RangesfromOto 1l




Is accuracy a good metric?

* Now, let's consider 50,000 passengers travel per day on an average.
Out of which, 10 are actually COVID positive.

* One of the easiest ways to increase the accuracy is to classify every
passenger as COVID negative. So, our confusion matrix looks like:

ACTUAL

_Positive _

FN TN
=10 50,000 - 10 = 49,990

49,990
50,000

Accuracy = = (0.9998 or 99.98%

 We achieve more accuracy than we
have ever seen in any model, but this
does not solve our purpose which Is:

* We need to identify COVID positive
passengers!

PREDICTED
Positive

Negative



Is accuracy a good metric?

* Not labeling 10 of actually positive passengers entering the country
will result in increasing the spread in the community

« Accuracy In this context is a terrible measure because its easy to
get extremely good accuracy but that's not what we are interested in

* But is accuracy always a poor measure? When the data is
balanced, accuracy is a good measure of evaluating a model. On
the other hand if data is imbalanced (as in our case), then
accuracy Is not a correct measure of evaluation

— What is data imbalance: number of samples between classes is uneven




Recall (Sensitivity or True Positive rate)

* Recall gives the fraction you correctly identified as positive out of all
actual positives — a measure of a classifier's completeness
— how “sensitive” the classifier is to detecting positive cases

Number of correct positives TP
All positives ~ TP+FN

— Out of all positive passengers what fraction you identified correctly

— Going back to our previous strategy of labeling every passenger as COVID
negative that will give recall of zero: Recall = 0/10 =0

— S0, In this context, Recall is a good measure. It says that the terrible strategy
of identifying every passenger as COVID negative leads to zero recall

— We want to maximize the recall 2 1

— Is Recall alone good enough to evaluate the performance of a classification
model?

e Recall =



Recall

* To answer the previous question, consider another scenario of
labeling every passenger as COVID positive

 The confusion matrix will look like:

TP 10
e Recall = . = 0 =1 ACTUAL

-
v

FP

50,000 - 10 =49,990

* S0, recall independently may not
a good measure

TN

=0

PREDICTED




Precision

* Fraction of correctly identified as positive out of all predicted as
positives — a measure of a classifier's exactness

— Refers to a model's ability to correctly interpret positive observations

Number of correct positives TP
All predicted positives TP+FP

e Precision =

« Considering our second bad strategy of labeling every passenger as
positive, the precision would be :

TP 10

e Precision = — = (0.0002
TP+FP  10+49990




Recall vs Precision

* While this bad strategy has a good recall value of 1 but it has a
terrible precision value of 0.0002

* This clarifies that recall alone is not a good measure, we need to
consider precision value as well

« Considering another case of labeling only one passenger (correctly)
as COVID positive whereas the rest as COVID negative. The
confusion matrix in this case will be: ACTUAL

TP
=1
TN
50,000 - 9 = 49,991

TP 1

= =1
TP+FP 1+0

Precision =

TP 1
TP+FN 1+9

0.1

Recall =

Ive

TP + TN 49991
TP+ FP+TN+FN 50000

= 0.99984

PREDICTED

Negat

Accuracy =



Recall vs Precision

* In some cases, we want to maximize either recall or precision at the
cost of others

— As in this case of labeling passengers, we really want to get the predictions
right for COVID positive passengers because it is really expensive to not
predict the passenger right as allowing COVID positive person to proceed will
result in increasing the spread. So, we are more interested in recall here.

« Unfortunately, sometimes it’'s difficult to have it both ways: often,

Increasing precision reduces recall and vice versa. This is called

precision/recall tradeoff.

P TP High scores for both show that the
TP + FP classifier is returning accurate results
(high precision), as well as returning a

Recall = re majority of all positive results (high

TP + FN recall).



F-1 score

« Often convenient to combine precision and recall into a single metric
* F1 score is the harmonic mean of the model’s precision and recall

2 *x Precision * Recall

e 1 score = —
Precision +Recall

* Why harmonic mean and not simple average?
— Not sensitive to extremely large values, unlike simple averages

— Example: a model with a precision of 1, and recall of O gives a simple average
as 0.5 and an F-1 score of 0

— If one of the parameters is low, the second one no longer matters in the F-1
score.

— F-1 score favors classifiers that have similar precision and recall

— F-1 score Is a better measure to use If you are seeking a balance between
Precision and Recall



F-1 score

* Previous formula can be only used in a binary classification problem

* |n a multi-class classification problem, we obtain one F1-score per
class (instead of a single overall F1-score)

— Instead of having multiple per-class F1-scores, it would be better to average
them to obtain a single number to describe overall performance

Macro average: mean of all the per-class F1 scores. This method treats all classes
equally regardless of the number of samples in each class. Not recommended for
unbalanced datasets.

Weighted average: weighted mean of all the per-class F1 scores. Each class F1-score is
multiplied by the percentage of samples belonging to this class (e.g. majority class is
given higher weight). Recommended for unbalanced multi-class datasets.

Micro average: computes a global average F1 score by counting the sums of the True
Positives (TP), False Negatives (computes the proportion of correctly

classified observations FN), and False Positives (FP) for all classes collectively. In other
words, it out of all observations which is the same as measuring the accuracy.

from sklearn.metrics import fl score ‘/////—Orweightedormicro
fl score(y true, y pred, average='macro')



F-beta score

* The F-beta score calculation follows the same form as the F-1 score,
however It also allows you to decide how to weight the balance
between precision and recall using the beta parameter

Precisi TP
, o recision TP + FP
(1+beta?) = Precision = Recall
e Fbeta score = > — TP
beta“ * Precision +Recall Recall =
TP+ FN

— When beta=1, the F-beta score is equivalent to the F-1 Score

— When beta=0.5, this score is the F-0.5 score which raises the importance of
precision and lowers the importance of recall (goal: minimize False Positives)

— When beta=2, this score is the F-2 score which raises the importance of recall
and lowers the importance of precision (goal: minimize False Negatives)




Balanced vs unbalanced target variable

- Data imbalance: typical problem for real-world datasets

— number of samples between classes is uneven

When size of the majority class gets more than twice the size of
the minority class, dataset begins to be considered unbalanced

« Machine learning model tends to be better at

predicting the class with more samples (majority L _*
class) than the other with fewer samples (minority classes)
— The greater this imbalance, the higher the bias of the model towards the
majority class

« Class imbalance becomes a problem when there are not enough
samples belonging to the minority classes, and not by the ratio of
positive and negative patterns itself per se.
— If you have enough data, the "class imbalance problem" doesn't arise



Balanced vs unbalanced target variable

« Methods for balancing data are available — see here

Undersampling Oversampling

Copies of the |
minority class |

i S
/ A
/

e —
T —
e —

Original dataset Original dataset

* However, the problem of (artificially) balanced data can be worse
than the unbalanced case — see Appendix

» Effective metrics for unbalanced datasets:
— Precision, Recall, F-1 score with weighted average
* Rule of thumb: you can always track performance of unbalanced

classification with Precision/Recall/F-1 score metrics first and then
decide whether you need to proceed towards balancing or not



https://towardsdatascience.com/machine-learning-target-feature-label-imbalance-problem-and-solutions-98c5ae89ad0

Example: Telco Dataset

* A fictional telco company that provided home phone and Internet
services to 7043 customers in California in Q3

- Dataset avallable here
— 11 rows have missing values => removed

« Each row represents a customer with 21 features
— Both categorical and numerical

Target value: Churn — customers decision whether to leave (Yes/No)

Binary classification problem
— Predict whether a customer will leave or stay at the end of the quarter



https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB09/telco.csv

Explore dataset

df

.describe ()

4 Numerical Features

SeniorCitizen
customer is 65 or older: 1 (Yes), 0 (No)

Tenure
months that the customer has been with the company

MonthlyCharges

customer’s current total monthly charge for all their services
TotalCharges

Tenure*MonthlyCharges

count

mean

std

min

25%

0%

3%

max

SeniorCitizen tenure MonthlyCharges TotalCharges
7032000000 7032.000000 7032000000  7032.000000
0.162400 32421788 64798208 2283.30044
0328344 24.545260 30.085974  2266.771362
0.000000 1.000000 18.250000 18.800000
0.000000 9.000000 35.587500 401.450000
0.000000 29000000 70350000  1397.475000
0.000000 55000000 89.862500  3794.737500
1.000000 72000000 118750000  3684.800000

16 Categorical Features (most of them are Yes/No, other are categorical)

— Services that each customer has signed up for — phone, multiple lines, internet, online

security, online backup, device protection, tech support, streaming TV and streaming movies
— Customer account information — id, contract, payment method, paperless billing
— Demographic info about customers — gender, and if they have partners and dependents

Target Variable: Churn



%s.
P

Observations: Unbalanced

- Dataset target is imbalanced
— Churn “No" is almost 3 times as “Yes"

— Accuracy is not the right model evaluation metric and it seems we need to
consider Precision, Recall and F-1/F-beta Score

5000 1

4000 1

+« 3000 1

2000 -

1000 A




Observations: Tenure vs Churn

« Customer who left the Telco are mostly
customers within 1st month (600+) and
churn steady declines over time

* |If customer can be retained between
10-20 months, there are high chances,
customer will stay very long

« Customer at 72-month tenure, mostly
stayed (Churn=0)

* Tenure seems to be a significant feature
since its values are significantly related
to the customer churn rate (high
variance in churn rate for different
values of tenure)

1400 -

1200 -

1000 -

B0

GO0 1

400 A

200 1

D .
0 10 20 30 40 50 A Al

E=nure
(number of months with the company)




Observations: MonthlyCharges vs Churn

« Majority of customers pay low small
monthly charges ($18 — 20) and tend to
be loyal

« Customer leaving are mostly in the
band of $75-100 who have opted for 200 -

multiple services § w0l
« MonthlyCharges seems to be a 400 -
significant feature that can used to 200 |

predict which customers are expected ""m @& & om w1k
MonthlyCharges
to leave




Count

V.
>

Observations ['

 gender: Difficult to determine churn using this field. Counts are
almost same in either category — not significant feature

* SeniorCitizen: Almost 50% of senior customers tend to leave

— Since the share of senior customers is 16% of the total amount of
customers, this indicator requires further research with additional data

- Partner: Customers with partner have lower chance of leaving

2500 -

2000 4

1500 4

1000 +

500 1

Churn
B No 4000 4
I es

Churn
B No
I Yes

Churn
mEm No
mm Yes

2500 4

2000+
3000 4

15001

Count
Count

2000 -
1000 -

1000 00 -

0-
Female Male < 65 >= 65 Yes No
gender SeniorCitizen Fartner

Significant feature Significant feature



V.
>

Observations ['

« Dependents: Customer with dependents have lower chance of leaving

« Contract: Month to Month customers have likely higher chances to
leave; Old customers are more likely to stay

« PaperlessBilling: Customers with paperless billing have higher

chances of leaving compared to more customers preferring traditional
paper billing

3500 4

Churn
. 2500 1
B Yes

3000 4 2000

2500 -
< 2000
o
O 1500 -
1000 4

500 +

No

Dependents

Yes

15001

ount

O 1000 4

500 4

Maonth-to-month

One year
Contract

Twao year

Count

2000

1500 4

1000 -

500 4

Yes Mo

PaperlessBilling

Significant feature

Significant feature

Significant feature



Correlation matrix of numerical features

 Prior evaluating correlation matrix, -.c..
all yes / no features are converted g

toO's & 1's
* Observations:
— Tenure achieves the highest
correlation with the target value
(churn)

— Tenure and MonthlyCharges are
highly correlated with TotalCharges, e &

which needs to be removed as
redundant feature g

Dependents 021

TotalCharges

Dependents
ManthlyCharges

=10

—-0a




Feature Selection (SFS technique)

- Categorical data are converted to
numerical using one hot encoding

— End up with 40 numerical features

« Sequential Forward Selection (SFS)
technique used for feature selection
(eliminination)

— keep 15 most important features that
maximize F-1 score (weighted average)

Perf nce

T

Highest F1-score achieved
using 15 features

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
3 3 3




Evaluation

* Run a large set of classifiers using default hyper-parameters values
with 10-fold CV to have an initial feeling of the performance

— LogisticRegression, KNeighborsClassifier*, SGDClassifier*,GaussianNB,
SVC*, DecisionTreeClassifier, RandomForestClassifier, AdaBoostClassifier

— Consider confusion matrix, Precision, Recall, F-1 score (weighted average)

Logistic Regression Results K Nearest Neighbors Results

Recall=0.566 Recall=0.524
E Precision=0.623 2 Precision=0.567
g F1=0.800 E F1=0.775

(*) Feature re-scaling
Is recommended prior
training. It was not
& & & & applied in these

Predicted label Predicted label experiments though.




Evaluation: total results

Model Cross Val Score Test Accuracy Average_Accuracy Precision Recall Awvg Precision Recall F1 Score
0 LogisticRegression 0.206731 0.8031 0804325 0623457 0.565826 0.5629525 0.799320
7 AdaBoostClassifier 0.200943 07939 0.801924 0608414 0.526611 0.645876 0.788763
3 SV 0797683 07967 0797182 0821953 0.507003 0.623442  0.732476
6 SGDClassifier 0798218 0.7946 0796409 0596045 0.591036 0620836 0.794312
1 xMeighborsClassifier 0789774 07775 0773637 0566657 0.523810 0.5314450 0.774581
5 RandomForestClassifier 0.768706 0.7669 0.7678303 0.545741 0.484554 0.545093 0.762141
2 GaussianiB 0789771 0.7619 0.765836 0.522917 0.703081 0581346 0.771993
4 DecisionTreeClassifier 0.736838 0.7335 0.735194 0474578 0470532 0.366614 0.733103

 Logistic Regression and Adaboost classifier model look promising
achieving highest Average Precision Recall score and F1 score

« Let's try to improve both models by selecting the best combination
of hyper-parameter values (use of GridSearchCV)



Best model selection

* Logistic Regression Classifier

Final accuracy score on the testing data: 0.8038
Final F-score on the testing data: 0.8005
LogisticRegression(C=10, max_iter=10000, solver='newton-cg')

 AdaBoost Classifier

Final accuracy score on the testing data: 0.7989
Final F1-score on the testing data: 0.7942
AdaBoostClassifier(learning_rate=0.1, n_estimators=500)

« Source code for all classification experimentations can be found
online (lab web page)




Clustering
* Unsupervised Machine Learning process (no target variable) of
dividing the dataset into groups consisting of similar data points

- Each group is called a cluster and contains data points with high
similarity and low similarity with data points in other clusters

10.0 - R cluster 1

A cluster 2
7.5 4 cluster 3
5.0 1
25

0oq

—254 A

50 - " .I‘--. i,

-75 , 2]

—Z o 2 4 G 8 10 12 -4 -2 0 2 - 6 8 10

Samples in two-dimen;ional (2 features) space Samples in two-dimensional (2 features) space
BEFORE clustering AFTER clustering in three groups

The number of clusters (k) is a hyper parameter of clustering models: needs to be defined prior performing clustering



K-means: prominent clustering algorithm

« User provides the number of clusters K :

« K-means iterative process involves the following steps:

1. Selects K samples from data, or generates K points to be used
as centroids (array of centroids is referred to as code book)

2. Assigns all samples to the closest cluster centroid (referred
to as mapping from code book)

3. Recomputes the centroids of newly formed clusters
4. Repeats steps 2 and 3

« Stopping criteria for K-means:
— Centroids of newly formed clusters do not change

— Samples remain in the same cluster
— Maximum number of iterations is reached




K-means Issues

* Works only with numerical data

— Nominal (categorical / labelled) data need to be transformed into a new feature
space; this approach can be very inefficient, and it does not produce good
results

» Distance measure is Euclidean
— Scale should be of similar scale in all dimensions (features) — rescale data?

* Depends on initial centroid selection

— The more optimal the positioning of these initial centroids, the fewer iterations
of the k-means algorithm will be required for convergence
Strategic consideration to the initialization of these initial centroids could prove useful

— Avallable initialization strategies:
Random selection: prone to bad selection (e.g. very close to each other)

K-means++ is a smart centroid initialization technique which selects centroids being as far
as possible from one another



K-means bottom line

* Easy to use
* May need to scale features if in different scales
« Good initial centroid selection method available: K-means++

* Need to set K prior running the algorithm




Choosing the best K (number of clusters)

« How can we determine the “best” value of K?
— |Is there an objective method?

* An estimation can be obtained using the following techniques:
— Elbow method
— Silhouette analysis




Elbow method parameters

* Inertia: The sum of squared distances* from each sample (data point)
to its assigned cluster centroid
— (*) Typically, the Euclidean distance metric is used

« Distortion: Weighted (by the cluster size) sum of squared distances
from each sample (data point) to its assigned cluster centroid

« Example: use K-means, with K=2, to cluster 7 data points from a
dataset having only 2 features in order to be able to visualize the distances in the 2-

dimensional space and better understand the calculations below:

1 % 2 centroids )
sk Ao Inertia = 0.47% + 0.19% + 0.34% + 0.25% + 0.44% + 0.36% + 0.58%
-?E'l'a' 0.58 /036,
317 _ _ (0.47240.19% + 0.34%)  (0.25% + 0.44% + 0.36% + 0.582)
: i S Distortion = +
sl 047 *,..--""u.m 3 4

144 = D34 »

4.0



Elbow method using inertia / distortion

* Run K-means algorithm for different values of K and plot the values
of inertia and distortion for each iteration

The Elbow Method using Inertia The Elbow Method using Distortion

30000
14000

25000 1 12000

20000 1 10000 1

s Overfitting 2 00 Overfitting
% 15000 - : 5 :
£ region 2 so00 ] region
1|:|':||:":| 7 4EI{ID |
5000 4 2000 -
T T T T T T T T Tl‘. EI ] =
2 3 4 5 5 7 8 3 10 3 3 4 c 5 7 8 3 10
Walues of K Walues of K

« “Best” number of clusters: value of K at the “elbow” I.e the point
after which the distortion/inertia start decreasing in a linear fashion

— adding another cluster doesn't give much better modeling of the data
— smaller and tighter clusters explain less variation



Silhouette score

« Measures how similar a data point is to its own cluster (cohesion)

compared to other clusters (separation)

35 1

Silhouette score for data point i :

b(i) — a(i)

SO = e ®, b@) .

ranges from -1to 1
— high value indicates that the data point is
well matched to its own cluster and
poorly matched to neighboring clusters
— values near 0 indicate overlapping clusters
— negative values generally indicate that a
sample has been assigned to the wrong
cluster, as a different cluster is more similar
Find mean value of silhouette score of all
data points => if most objects have a high
value, then mean value is close to 1 and
the clustering configuration is appropriate

30

20

15

(1)
Average distance from
point to others in same

cluster: 5.52

B (i)

© Average distance

@)

from point to points
in neighboring

cluster: 21.82

Silhouette score for chosen point:
(21.82-5.52)/21.82 =0.75

25

T
30

T
35

T T
40 45

1
50



Example: Drivers Dataset

* Includes 4000 drivers | | |
. Driver ID,Distance Feature,Speeding Feature
« Each observation has 3 columns; 3423311935,71.24,28.0

3423313212,52.53,25.0
— Driver ID 3423313724,64.54,27.0

— Distance Feature: mean distance covered per day

— Speeding Feature: mean percentage of time a driver was >5 mph over
the speed limit

No target variable (no notion of groups, labels)
Load dataset, drop Driver ID column, scale features

dataset = pd.read csv('fleet data.csv')
dataset = dataset.drop(columns=['Driver ID'])
scaler = RobustScaler ()

X = scaler.fit transform(dataset)

Source code for all clustering experimentations can be found online


https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB09/fleet_data.csv

K-Means
* Python implementation: sklearn.cluster.Kmeans () class

* Run algorithm to define groups (clusters)

from sklearn.cluster import Kmeans
# create K-means object and run clustering on the input values (X)

# default k (n_clusters param) 2> 8
# default centroid initialization method (init param) =2 k-means++

kmeans = KMeans (n clusters=2) .£fit (X)
print (kmeans.labels ) # labels of each sample

print (kmeans.centroids )

« Assign new data samples to the most related cluster (closest centroid)

new data = ..
y pred = kmeans.predict (new data)




Visualizing results

%s.
P

* Run the K-means clustering algorithm for a range of K values

Urban drivers that are

 Review the results |
speeding frequently
i R {:|||_|l5|:er|:| i i See ;-t-ﬂ:* E I w '[|1JI5|IEF':| i i . Tan ;-t-i-i:-t
1751 « Clusterl ;.;.:---;-a;t.,.r:---; ......... ] 1751+ = E:uster; A Q‘ﬁ"';";t;"?;"": """"" ]
i . uster | | - ey P
* 04 & Cluster3 i Ry '-‘----;---: --------- ]

B FTT I
BT O —

Speeding Feature

......

Speeding Feature

2 -
/ Distance_Feature \ Urban drivers Distance_Feature

Urban drivers _ Rural drivers that follow ~
K=2 speed limits K=4



Elbow method

* We run the K-means algorithm for the values of k from 2 to 10 and
plot the values of inertia and distortion for each iteration

The Elbow Method using Inertia The Elbow Method using Distortion

30000 4
14000

25000 1 12000 -

20000 - 10000 1

8000 -
15000 -

Inertia
Distortion

G000 -

10000 A 4000 -

coo0 2000 -

Values of K WValues of K

|t seems that the best number of clusters for grouping drivers is 4




Silhouette score

* We run the K-means algorithm for the values of k from 2 to 10 and
plot the mean Silhouette score for each iteration

Silouette for Kmeans cell's behaviour

0.8 -7

Silouetke
[ o]
[my] |

[=
LN

]
T

2 3 4 g B 7 B 9 10
Mumber of clusters (k)

* Silhouette score confirms that the best number of clusters for
grouping driversis 4



Task: Wine Analysis

« Goal: Build a classifier to detect wine types

« Given datasel contains data of a chemical analysis of wines grown
In the same region Iin Italy but derived from three different cultivars

* Analysis determined the quantities of 13 constituents (features)
found in each of the three types of wines.

- Dataset snapshot:

class,alcohol,malic acid,ash,alcalinity of ash,magnesium,total ...
1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065
1,13.2,1.78,2.14,11.2,100,2.65,2.76, .26,1.28,4.38,1.05,3.4,1050
1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185



https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB09/wine_data.csv

Task: Wine Analysis

* Your analysis will answer the questions:
— How many wines of each type are there in the dataset?

— Which of the following classification algorithms:

Decision Trees, Random Forest, AdaBoost, Gradient Boosting, K-Nearest Neighbors,
Gaussian Naive Bayes, Support Vector Machines

gives the best accuracy?

« Complete the given WineAnalysis.ipynb notebook file

— Replace the keyword with the appropriate source code based on the

comments. There is also a question to answer. No worries if your results are
slightly different than the results shown in the given notebook file.

« Submit the completed notebook file to Moodle by Wednesday 3" of
April @ 09:00 am



https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB09/WineAnalysis.ipynb

Appendix — Problem with artificial balancing

« Let's say you're recognizing hand-written letters from English alphabet (26
letters). Overbalancing every letter appearance will give every letter a
probability of being classified (correctly or not) roughly 1/26, so classifier will
forget about actual distribution of letters in the original sample. And it's ok when
classifier is able to generalize and recognize every letter with high accuracy.

« But if accuracy and most importantly generalization isn't "so high" (I can't give

you a definition - you can think of it just as a "worst case") - the misclassified
points will most-likely equally distribute among all letters, something like:
— "A" was misclassified 10 times
— "B" was misclassified 10 times
— "C" was misclassified 11 times
— "D" was misclassified 10 times
— ...and soon




Appendix — Problem with artificial balancing

 As opposed to without balancing (assuming that "A" and "C" have much higher
probabilities of appearance in text)
— "A" was misclassified 3 times
— "B" was misclassified 14 times
— "C" was misclassified 3 times
— "D" was misclassified 14 times
— ...and so on

« So frequent cases will get fewer misclassifications. Whether it's good or not
depends on your task. For natural text recognition, one could argue that letters
with higher frequencies are more viable, as they would preserve semantics of
the original text, bringing the recognition task closer to prediction (where
semantics represent tendencies). But if you're trying to recognize something
like screenshot of ECDSA-key (more entropy -> less prediction) - keeping data
unbalanced wouldn't help. So, again, it depends.



https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

Appendix — Problem with artificial balancing

« The most important distinction is that the accuracy estimate is, itself,
getting biased (as you can see in the balanced alphabet example), so you

don't know how the model's behavior is getting affected by most rare or most
frequent points.




Appendix — Logistic Regression

 Logistic regression name comes from the logistic sigmoid function

= logisti =
y = logistic(z) 1+ o2

* Logistic function outputs a value
(a probability) between O and 1 Y e

— Output y can be seen as the probability
of belonging to the positive class, P,

— The returned probability can be
converted to a binary category ]

z=0= Pg-1) = 0.5 = Sample belongs to positive class (e.g. spam)

z < 0= Py-1) <0.5= Sample belongs to negative class (e.g. not spam)

* Input z can be expressed as z = f, + X1 + B, X, + -+ B, X,,, where
X1 are independent variables (features) of the classification problem



Appendix — Logistic Regression Interpretation

» The interpretation of the coefficients ([3,, B, etc.) in logistic

regression differs from the interpretation of the coefficients in linear
regression

+ Coefficients do not influence the probabillity linearly any longer

« Reformulate the equation so that only the linear term is on the right
side of the formula

Yy = P —-1) = 1 = ln< P(y=1) ) = In (P(y=1)> = Z =ﬁ0 + ﬁ]_Xl + ﬁZXZ + ﬁ X
YT 1t e 1= Py=1) P(y=o) o

* We call the term in the In() function “odds” and wrapped in the
logarithm it is called log odds

« This formula shows that the logistic regression model is a linear
model for the log odds



Appendix — Logistic Regression Assumptions

1 (y
y = = In

1 _y> =2z = o+ p1X1 + f2 X2 + - pnXn

 Linear relationships between X and In(y)

* No or little multicollinearity

— Multicollinearity: two or more of the independent variables are highly correlated
to one another




	Slide 1: EPL448: Data Mining  on the Web – Lab 9
	Slide 2: Classification
	Slide 3: Types of Classification
	Slide 4: Classification algorithms
	Slide 5: Is rescaling/unskewing needed?
	Slide 6: Is rescaling/unskewing needed?
	Slide 7: Classification model evaluation metrics
	Slide 8: Classification model evaluation metrics
	Slide 9: Confusion matrix
	Slide 10: Accuracy
	Slide 11: Is accuracy a good metric?
	Slide 12: Is accuracy a good metric?
	Slide 13: Recall (Sensitivity or True Positive rate)
	Slide 14: Recall
	Slide 15: Precision
	Slide 16: Recall vs Precision
	Slide 17: Recall vs Precision
	Slide 18: F-1 score
	Slide 19: F-1 score
	Slide 20: F-beta score
	Slide 21: Balanced vs unbalanced target variable
	Slide 22: Balanced vs unbalanced target variable
	Slide 23: Example: Telco Dataset
	Slide 24: Explore dataset
	Slide 25: Observations: Unbalanced 
	Slide 26: Observations: Tenure vs Churn
	Slide 27: Observations: MonthlyCharges vs Churn
	Slide 28: Observations
	Slide 29: Observations
	Slide 30: Correlation matrix of numerical features
	Slide 31: Feature Selection (SFS technique)
	Slide 32: Evaluation
	Slide 33: Evaluation: total results
	Slide 34: Best model selection
	Slide 35: Clustering
	Slide 36: K-means: prominent clustering algorithm
	Slide 37: K-means Issues
	Slide 38: K-means bottom line
	Slide 39: Choosing the best K (number of clusters)
	Slide 40: Elbow method parameters
	Slide 41: Elbow method using inertia / distortion 
	Slide 42: Silhouette score
	Slide 43: Example: Drivers Dataset
	Slide 44: K-Means
	Slide 45: Visualizing results
	Slide 46: Elbow method
	Slide 47: Silhouette score
	Slide 48: Task: Wine Analysis
	Slide 49: Task: Wine Analysis
	Slide 50: Appendix – Problem with artificial balancing
	Slide 51: Appendix – Problem with artificial balancing
	Slide 52: Appendix – Problem with artificial balancing
	Slide 53: Appendix – Logistic Regression
	Slide 54: Appendix – Logistic Regression Interpretation
	Slide 55: Appendix – Logistic Regression Assumptions

