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Abstract for transmitting 1 bit of data using the MICA mote [1] is
approximately equivalent to processing 1000 CPU instruc-
Continuous queries in wireless sensor networks are es-tions [12]. One way to cope with the energy challenge is to
tablished on the premise of a routing tree that provides each power down the radio transceiver during periods of inactiv-
sensor with a path over which answers can be transmitted toity. In particular, it has been shown that sensors operating
the query processor. We found that these structures are subat a 2% duty cycle can achieve lifetimes of 6-months using
optimality constructed in predominant data acquisitios-sy  two AA batteries [13].
tems leading to an enormous waste of energy. In this paper The continuous interval during which a sensor nétle
we present MicroPulsea workload-aware optimizational- ~ enables its transceiver, collects and aggregates thetsesul
gorithm for query routing trees in wireless sensor networks from its children, and then forwards them all together to its
Our algorithm is established on profiling recent data acqui- own parentis defined as theking windowr. Note thatr is
sition activity and on identifying the bottlenecks using an continuous because it would be very energy-demanding to
in-network execution of the critical path method. A node S suspend the transceiver more than once during the interval
utilizes this information in order to locally derive the #m  of anepoch which specifies the amount of time that sensors
instance during which it should wake up, the interval during have to wait before re-computing a continuous query.
which it should deliver its workload and the workload in- It is important to mention that the exact value ofs
crease tolerance of its parent node. We additionally previd query-specific and can not be determined accurately using
an elaborate description of energy-conscious algorithonsf  current techniques. For instance, a sensor cannot easily es
disseminating and maintaining the critical path cost in a timate how many tuples will be transmitted from its chil-
distributed manner. Our trace-driven experimentatiorhwit dren. Choosing the correct value fois a challenging task
real sensor traces from Intel Research Berkeley shows thatas any wrong estimate might disrupt the synchrony of the
MicroPulse can reduce the data acquisition costs by manyquery routing tree. The objective of this work is to auto-

orders. matically tuner, locally at each sensor without any a priori
knowledge or user intervention. Note that in definingie
1 Introduction are challenged with the following trade-off:

e Early-Off Transceiver: Shall S power-off its
transceiver too early reduces energy consumption but
also increases the number of tuples that are not deliv-
ered to thesink the root of the routing tree. As a result
the sink will generate an erroneous answer to the query
Q;and

e Late-Off Transceiver: Shall S keep the transceiver
active for too long decreases the number of tuples that
are lost due to powering down the transceiver too early
but also increases energy consumption. Thus, the net-
work will consume more energy than necessary which
is not desirable given the scarce energy budget of each

1A preliminary version of this paper appeared in [20] sensor.

Recent advances in embedded computing have made it
feasible to produce small scale sensors, actuators and pro-
cessors that can be used in ad-hoc deployments of environ-
mental monitoring infrastructures [16, 8, 12]. The longgvi
of a Wireless Sensor Network (WSN) heavily relies on the
existence of power-efficient algorithms for the acquisitio
aggregation and storage of the sensor readings.

Communicating over the radio in a WSN is the most en-
ergy demanding factor among all other functions, such as
storage [21] and processing [12]. The energy consumption




SINK (sO)[ critical Path sink in the given network is at leagt=99, since the critical
S0<=s1<=s3<=s8 path issg %2 S1 32 S3 2 S8.

Y =99 Having this information at hand enables the scheduling
of transmission between sensors. In particular, sessor
can be scheduled to wake-up and transmit at the following
deadlines®;): wi = ¥ — 40 = 59, wy = wy; — 13 = 46,

w3z = wyp — 30 =29, wy = wy; —22 =37 while S0 and51

will be listening for these transmissions during the in&sv
70=[59..99) andr;=[29..59) respectively. The same intu-
ition also applies for the leaf nodes, e.g; starts transmis-

Figure 1. Nine sensing devices and their re- sion atws = we — 11 = 35 ands; listens for this transmis-
spective workload (shown as edges) during sion in the range»=[35..46). Additionally, the critical path
the execution of a continuous query Q. Mi- enables a senser; (j < n) to estimate the interval during
croPulse utilizes this information in order to which its parent; (i < n) will have its transceiver enabled.
locally adapt the waking window of each sen- This is very useful because in the subsequent epochs and
sor using the Critical Path Method. under a different workloads; can find out if it can deliver

the new workload without first asking to adjust its waking

window.

In this paper we presemicroPulse a novel algorithm
for adapting the waking window of a sensing devitlkased
on the data workload incurred by a quépy Our ideas are
established on profiling recent data acquisition activitgl a

It should be noted that the edges in Figure 1 have dif-
ferent weights. This is very typical for a sensor network as
the link quality can vary across the network [16]. Another
- = ) ! reason is that some sensors might have a different work-
on identifying the bottlenecks using an in-network €xecu- 554 than other sensors. Note that our scheduling scheme
tion of the Critical Path Method. is distributed which makes it fundamentally different from

TheCritical Path Method (CPM]6] is a graph-theoretic  centralized scheduling approaches like DTA [19] and TD-
algorithm for SChedUling prOjeCt activities. It is Wldely DES [4] that generate collision-free query p|ans at a cen-
used in project planning (construction, product develop- tralized node. Additionally, our approach is also differen
ment, plant maintenance, software development and re<from techniques such as [15] which segment the sensor net-

search projects). The core idea of CPM is to associate eaclyork into sectors in order to minimize collisions duringalat
project milestone with a vertex and then define the de-  acquisition.

pendencies between the given vertices usictivities For
instance, the activity; < v; denotes that the completion Qur Contributions
of v; depends on the completion of. Each activity is as-

sociated with a weight (denoted 3%2“) which guantifies  In this paper we make the following contributions:
the amount of time that is required to complef@ssuming
thatv; is completed. The critical path allows us to define
the minimum time, or otherwise the maximum path, that is
required to complete a project (i.e., milestang. Any de-

lay in the activities of the critical path will cause a delay f
the whole project.

In order to adapt the discussion to a sensor network con- e We propose a distributed maintenance algorithm of the

e We devise techniques that intelligently exploit the crit-
ical path method in order to prolong the longevity of
the network and hence the quality of results. In partic-
ular, we optimize the length of the waking windaw
using an energy efficient distributed algorithm;

text assume that each sensgis represented by a CPM ver- critical path cost which minimizes communication be-
tex. More formally, we map eac$; to the elements of the tween sensors;
vertex sef” = {vy, vq,...,v,} using a 1:1 mapping func-

e \We provide an extensive experimental evaluation using
traces from a real sensor network deployment at Intel
Research Berkeley [2].

tion f : s; — v;, 1 < n. Also, let the descendent-ancestor
relations of the sensor network be denoted as edges in this
graph.

Figure 1 illustrates an example which will be utilized The remainder of the paper is organized as follows: Section
throughout the paper and Table 1 summarizes our main2 studies the waking window mechanism of popular data
symbols. The weights on the edges of the figure define theacquisition systems. Section 3 presents the underlying al-
workload of each respective node (as the required time togorithms of the MicroPulse Framework. Section 4 presents
propagate the query results between the respective plirs). our experimental study using a trace-driven simulator and
is easy to see that the total time to answer the query at theSection 5 concludes the paper.



TAG sink COUgar.

Table 1. Definition of Symbols Level 0 A sink

[ Symbol | Definition Level 1 '

Q A Query

si Sensor numbei (so denotes the sink). Level 204 d d

n Number of Sensor§s, sz, ..., $n } Level I

e,d Epoch duration and Routing tree Depth

P The Critical Path Cost of the network 0 Micropulse e 0 €

w; Wake-up time instance af; Level 0 jsink

Vi Critical Path cost of; Level ' ——

5 Waking window ofs; d | Listening

A Workload Increase Tolerance of the parens of Level Il Processing

Level [ Transmitting
0 e

2 Background and Related Work _ _ _ _ _
Figure 2. The Waking (Listening) Window (7)

In this section we study the query routing tree of the two In TAG, Cougar and MicroPulse.

most popular declarative acquisition frameworks: TAG [12,

13]and Cougar [18]. We start out our description by assum-

ing that the querﬁ has been disseminated to the sensors. cumstances: |) from aon-balanced t0p0|ogy/\/here some
nodes have many children and thus require more time to
collect the results from their dependents; and i) fronlti-
tuple answerswhich are generated because some nodes re-
turn more tuples than other nodes (e.g. due to the query

I- predicate).

The MicroPulse algorithm presented in this paper grace-
fully handles both cases of variable workload by utilizing
the Critical Path Method. Our algorithm, like TAG, utilizes
the TinyOS [7] MAC layer [17] to handle the collisions that
will occur if nodes in the same vicinity transmit during the
same interval.

Tiny Aggregation (TAG): In this approach, the epoch

is divided into a number of fixed-length timiatervals
{e1,ea,...,eq}, whered is the depth of the routing tree,
rooted at the sink, that conceptually interconnectsitben-
sors. The core idea of this framework is summarized as fo
lows: “when nodes at level i+1 transmit then nodes at level
i listen”. More formally, a sensog; enables its transceiver
attime instancev; = |e/d| *(d—depth(s;)) and keeps the
transceiver active for; = |e/d| time instances. Note that
SV (e;) provides a lower-bound an thus the answer will
always arrive at the sink before the end of the epoch. Set-

ting e as a prime number ensures the following inequality cougar: In this approach, each sensor maintainsait-
>_i—q(€i) < e, whichis desirable given that the answer has jng |ist that specifies its children. Such a list can be con-

to reach the sink at time instanee structed by having each child explicitly acknowledging its
For instance, if the epoch is 31 seconds and we have gyarent during the query dissemination phase. Having the

three-tiered network (i.ed = 3) like Figure 2 (top, left), |ist of children enables a sensor to shut down its transceive

then the epoch is sliced into three segmeft6,10,1Q. 45 so0n as all its children have answered. This yields a set

During interval [010), nodes at level 3 will transmit wéhil of non-uniform Waking WindOngTl, To, .. _}2 as Opposed
nodes at level 2 will listen; during interval [10..20) le®| {5 TAG where we have a singlewhich is uniform for all
nodes transmit while level 1 nodes listen; and finally during sensors (i.e e /d|).

[20..30), level 1 nodes transmit and the sink (level 0) fiste The main drawback of Cougar is that a parent node has
Thus, the answer will be ready prior the completion of time 4, recyrsively keep its transceiver active from the begigni
instance 31 which is the end of the epoch. _ ~ of the epoch until all children have answered. In order to
The main drawback of the TAG query routing tree is ¢qpe with children sensor that may not respond, Cougar de-
that the waking window- is an over-estimation of the ex- ploys a timeout:. To understand the drawback of Cougar
pected workload that incurs on the edges of the tree (in¢onsider Figure 2 (top, right), where level 2 and level 1
the above example 10 seconds!). The rationale behind this,gges are expected to enable their transceivers at time in-
over-estimation is to offset the limitations in the qualiy  gtance zero and wait until all their children have responded

the clock synchronization algorithms [12], but in reality i  Gjyen a failure at some arbitrary node(1 < i < n), will
is too coarse. In the experimental Section 4, we found thatrequire that each node on the path— ... — so, will keep

this over-est|mat_|9n is twq prders of magnltyde larger than 5 transceiver active for additional seconds.
necessary. Additionally, it is not clear howis set under
avariable workloadwhich occurs under the following cir- 2In particular, ifdepth(v;) < depth(v;) thent; > 1; (Vi,j < n).




3 The MicroPulse Algorithm The final step is to percolate these local edge costs to
the sink by recursively executing the following in-network

In this section we describe the underlying algorithms of functionf at each senso;:
MicroPulse. We divide our description in the following o
three conceptual phases: F(s:) = {0 if s; is a leaf,

_ _ _ | mazyicon A (f(s:) + si)  otherwise.
1. Construction Phaseexecuted once prior the execution viechitdren(ss) (f(85) + 513)

of @, during which the sink constructs the routing tree

o The critical path cost is thefi(sy) (denoted for brevity as
and becomes aware of the critical path aost

1). Using our working example of Figure 1, we will end

2. Pulse Phaseduring which each sensas; tunes its ~ YP with the following values if (ss<i<g) = 0, f(s4) = 4,
wake-up time instance); and waking windowr; ac- f(s3) =29, f(s2) = 11, f(s1) = 59 andy) = f(s0) = 99.

cording to the value. 3.2 The Pulse Phase

3. Adaptation Phaseexecuted when a topology or work-

load change occurs. In this phase each sensqr(i < n) locally defines three
parameters using the critical path cast These parame-
3.1 The Critical Path Construction Phase ters enables; to derive: i) the time instance during which

it should wake up (i.e;), i) the interval during which it

This phase starts out by having each node select oneshould transmit (i.e;), and iii) the workload increase tol-
node as its parent. This results invaiting list similarly to erance of the parent af (i.e., \;) which signifies when the
Cougar [18]. To accomplish this task, the parent is notified synchrony of the query routing tree might be disrupted.
through an explicit acknowledgement or becomes aware of  Algorithm 1 presents the main steps of this procedure
the child’s decision by snooping the radio. Note that in which propagateg top-down, from the sink to the leaf sen-
both TAG [12] and Cougar [18] nodes select as their par- sors, with a message complexity 6fn). The first step
ent whichever sensor forwarded the query first. Alterna- aborts the impossible case where the critical path is larger
tively, nodes could have chosen as their parent the neighbothan the epoch. The second step calculates the wake up
with the smallest hop count from the sink or the one with time instancew;, such thats; has enough time to collect
the highest signal strength. In more recent frameworks, lik the tuples from all its childrer; (Vj € children(s;)). In
GANC [14] and Multi-Criteria Routing [11], sensors select practice, this is defined by the child ef with the largest
their parents based on query semantics, power consumptionyorkload (i.e.,s;", ,..,u4)- The second step also defines
remaining energy and others. In more unstable topologiesthe waking window ofr;, which is the complete window
a node can maintain several parents [5] in order to achieveduring whichs; will enable its transceiver. In the third step,
fault tolerance but this might impose some limitations on the children ofs; are notified with the adjusted critical path
the type of supported queries. Nevertheless, all these alte cost (i.e.,r) — sf;“t). Concurrently with step three; also
natives are supplementary to this step. notifies its childrens; with the workload increase tolerance

In the next step, we profile the activity of the incoming of s; (i.e., \;) and a flag which signifies whether these nodes
and outgoing links and then propagate this information to- belong to the critical path. Thus; can intelligently sched-
wards the sink. In particular, we execute one round of dataule its transmissions in cases of local workload deviations
acquisition where each sensgrmaintains one counter for To facilitate our presentation we will now simulate the
its parent connection (denoted €%*) and one counter per  execution of Algorithm 1 on the example of Figure 1. To
child connection (denoted aigg), wherej denotesthe iden-  simplify the discussion, assume that the cast$ andc
tifier of the child. These counters measurewwkloadbe- (which account forprocessing the inaccurate clockand
tween the respective sensors and will be utilized to idgntif the collisions at the MAC laygrare all equal to zero.
the critical path cost in the subsequent epochs. Note thatAdditionally, assume that the critical path cost is small
these counters account for more time than what is requiredenough to fit within the epoch (i.e), << ¢). In particular,
had we assumed a collision-free MAC channel. Addition- with ¢» = 99 we get the following quadruples w;, 7;, A;)
ally, it is important to mention that we could have deployed at each sensor{ (so, 59, [59..99),0), (s1,29, [29..59), 0),
a more complex structure rather than the counsgtsand (82,46, [46..59),17), (s3, 29, [29..59), 0), (s4, 37, [37..59),
53", that would allow a sensor to obtain a better statistical 8), (s5, 35, [35..46),0), (s6,39, [39..46),4), (s7,27,
indicator of the link activity. By projecting the time costs [27..29),27), (ss,0, [0..29),0), (s9, 33, [33..37),0) }
obtained for each edge to a virtual spanning tree creates a To understand the benefits &f, consider the scenario
distributedQuery Routing Treesimilar to the one depicted where nodes; increases its workload by 15 time instances.
in Figure 1. SinceX; = 29 — 2 = 27, s; knows that the transceiver of



Algorithm 1 : MicroPulse Pulse Phase Algorithm 2 : MicroPulse Adaptation Phase

Input: n sensing device$sy, s, . .., s, } and the sinksy, Input: A sensors;, the critical path value);, the wake-up time
the Critical Path cosp, the epocte. w;, the waking windowr;, a flag which indicates i; lies on the
Output: A set ofn waking windowsr; (Vi < n), wake-up ~ ¢fitical path, an error thresholti

time instances; (Vi < n) and workload increase tolerance OutPut: An updated set oo;, 7; andA; values.

thresholds\; (Vi < n) 1. procedure Adapt(s;)

. . 2: > Step 1: Calculate Workload Indicators
Execute these steps beginning fr_omo (top-_down). 3: workload; =; —w;; > Workload of previous epoch
1. If ¢ > e then abortThe Critical Path is larger than 4 for j = 110 children(s;) do
the Epoch” 5: add(tuples(s;), workload;); > Build new workload
2. Find the maximuns”; in s;’s children and denote the  &: end for
identifier of this sensor asiazchild. Now calculate 7 add(tuples(s;), workload;); > Append local tuples
the wake timay; as follows: 8: x = |workload; — workload;| 1> Workload Deviation
in 9. if (z < ) then
Wi =Y = Symagehitd ~ @~ b= ¢, 1 10: signal(finished); > Negligible Workload Change

wherea, b andc are three variables which offset the
costs ofprocessingthe inaccurate clockndcollisions
at the MAC layer The waking window is the interval:

end if

=
=

12: > Step 2: Important Workload Change on the CP
13: if (cp;) then

7i = (Wi (Wi + 5 azenita)) 2 14: send("Request Critical Path Reconstructiosy);
. . . 15: signal(finished);
3. Now disseminatey; to s;’s children s; (Vj € 16: end ifg ( )
children(s;)). Upon receivingy;, eachs; decreases
Y, locally, as follows: 17: > Step 3: Important Workload Change NOT on the CP
out 18: if (workload; decreased by) then
Vi =i — Sj (3) 19: w; = w; + x; > Adjust local wakeup time
. . . T 20: else> Workload was Increased by x
4 tAt the Sﬁ.llze tlm? V\;I,IFh Ste}?,fd’ dlssémlna}?fb‘%ﬁ%;?d 21: if (x < A\;)then > xis less than the available slack
0 5;'s childrens; (vj € children(s;)). s; will uti- 22: w; = w; — x; > Adjust local wakeup time

lize this information in order to define theorkload 23

else
increase tolerance)\;) of s;, as follows: 24: send("Request Critical Path Reconstructiosy),
. . _ >
)\j = SZlmawchild - S?u (4) 25! end if
26: end if

5. Repeat steps 2-5, recursively until all sensors in the

network have seb;, 7; and\; respectively { < n). 27 signal(finished);

28: end procedure

its parents; is enabled for 27 additional time instances, thus this section can circumvent th@(n) cost incurred by the

s7 can start delivering the workload earlier (i.e; = 12 pulse phase in every epoch by deploying a set of rules we

instead ofw; = 27) succeeding in completing the transmis- describe next.

sion on-time. Algorithm 2, presents the MicroPulse Adaptation algo-
rithm which proceeds in three steps. The first step of the

3.3 Adaptation Phase algorithm (lines 2-11) calculates the workload indicatoirs

the current epoch (i.eworkload;) and the previous epoch

In this section we describe an efficient distributed al- (i.e., workload}). If the workload has changed by more
gorithm for adapting the MicroPulse query routing tree in than a user defined user threshélah line 9, we consider
cases of workload changes. this change as significant and proceed with the adaptation

First notice that the naive approach to cope with work- of the routing tree in line 12. Otherwise, we disregard this
load changes is to reconstruct the MicroPulse tree in everydeviation and abort the algorithm. Assuming a significant
epoch. The message cost of such an approach is analyzed ateviation, step 2 handles the case where the change occurs
follows: the MicroPulse construction phase has a messageon the critical path. In such a casg,has to request the re-
complexity of O(1) as it can be executed in parallel with construction of the routing tree using the construction and
the acquisition of data tuples from sensors (i.e., thegaiiti  pulse phases. For instance, if the workloadgithanges
path cost can be piggybacked with data tuples). The Pulsefrom 30 time instances to 35 time instances (see Figure 1)
phase on the other hand, has a message complexityrof then this will trigger the reconstruction of the MicroPulse
as it requires the dissemination of the critical path cost to tree and this change should be propagated to all nodes in
all n nodes in the network. The algorithm we propose in the network. Although this case is possible, our experimen-



tal study in section 4.1 has shown that it is not frequent.
Finally, step 3 of Algorithm 2 (lines 17-26) handles the

more common case where the change does not occur ovax,

the critical path. In such a case, if the workloaddis-
creasedvy z (line 18) then a sensor locally delays its wake
up variable by x (i.e., taw; + z). For instance, if the
workload of s; drops from 13 to 11 (thusy = 2), then
wy = wy + x = 46 + 2 = 48. Similarly if the workload

is increasedby «x (line 20) then there are two cases: i) the
increase is less or equal to the slagkand ii) the increase
is greater than the slack. For the first case (i) consider a
workload increase at; from 13 to 18 (thusy = 5 thatis
smaller than\y, = 17). This yields the following adapta-
tion of the wake up timev3¢* = w; — x = 46 — 5 = 41.
For the second case (ii) consider a workload increase at
from 13 to 32 (thusg = 19 that is larger than\, = 17).

This yields the reconstruction of the tree as such an inereas

might potentially create a new critical path.

4 Experimental Evaluation

In this section we describe the trace-driven experimental

methodology we adopt and the results of our evaluation.

4.1 Experimental Methodology

Datasets: We utilize a real trace of sensor readings that
is collected from 58 sensors deployed at the premises of

in: i) distributive aggregateswvhere records can be aggre-
gated in-network without compromising correctness (e.g.,
M n, Sum Count) and ii) holistic aggregates
where in-network aggregation might compromise the result
correctness (e.gMedi an), thus all tuples have to be trans-
mitted to the sink before the query can be executed. The
separation between the above cases is important as each in-
dividual case defines a different workload per edge (i.s-, di
tributive aggregates havefized workloadof one tuple per
edge while holistic aggregatewvariable workload.

The second class of representative queries rame-
aggregate selection queriege.g., SELECT not ei d
FROM sensors). Assuming a static topology such
queries generate fixed workloadper edge, unless we ap-
ply a predicate on the query (e.g.enperature > X)
and generate wariable workloadper edge in this manner.

In our experiments we utilize the following query-sets
which encapsulate all the above cases:

e Single-Tuple queriesST): where a sensor transmits
exactly one tuple per epoch. Distributive aggregates
belong to this category. We utilize the following

non-aggreggate selection query in our stu@®gELECT
noteid, tenp

FROM sensors
WHERE tenp = (SELECT MAX(tenp) FROM
Sensors)

e Multi-Tuple queries with Fixed sizeV(TF): where a
sensor transmits a set grtuples per epoch witlf be-

the Intel Research in Berkeley [2] between February 28th
and April 5th, 2004. The sensors utilized in the deployment
were equipped with weather boards and collected time-
stamped topology information along with humidity, temper-
ature, light and voltage values once every 31 seconds (i.e.,
the epoch). The dataset includes 2.3 million readings col-
lected from these sensors. Using this dataset we derive the
following two datasets:

i. Intel54: This is a subset of readings from the 54 sen-
sors that had the largest amount of local readings. The
rest four sensors were excluded from our experiments
because they had many missing values.

ii. Intel540: This is a set of 540 sensors that is randomly
derived from the of Intel54 dataset. In particular, we
randomly replicate nodes from the Intel54 dataset until
we obtain a set of 540 nodes.

ing a constant. Holistic aggregates and non-aggregate
selection queries with a fixed workload belong to this
category. We utilize the following representative query
in our study:

SELECT not ei d,
FROM sensors

e Multi-Tuple results with Arbitrary sizeMTA ): where
a sensor transmits a set ¢f tuples per epoch with
/' being a variable that might change across different
epochs. Non-aggregate selection queries with a vari-
able workload belong to this category. We utilize the
following representative query in our study:

SELECT noteid, tenp
FROM sensors
WHERE t enp>39

tenp

Sensing Device & Communication: We use the energy

model of Crossbow’s new generation TelosB [1] sensor de-
Query Sets: We utilize three representative queries from vice to validate our ideas. TelosB is an ultra-low power

two predominant classes of queries in wireless sensor netwireless sensor that consumes 23mA in receive mode (Rx),

works.
The first class of such queries amlmgregate se-
lection queries[18, 12] (i.e., SELECT agg() FROM

19.5mA in transmit mode (Tx)7.8mA in active mode
(MCU active) with the radio off and.1uA in sleep mode.
Our performance measure Energy in Joules that is re-

sensors). Roughly, these queries can be distinguished quired at each discrete time instance to resolve the query.



The energy formula is as followingEnergy(Joules)
Volts x Amperes x Seconds. Our communication pro-
tocol is based on the ubiquitous for sensor networks IEEE
standard 802.15.4 (i.e., the basis for ZigBee [3] which is
used by many sensor devices including TelosB). Our data
frames are structured as following [10]: Each message is
associated with a 5B3{te TinyOS header [9]. This is aug-
mented with an additional 6B application layer header that
includes: (i) the sensor identifier (1B), (ii) the message si
(4B) and the depth of a cell from the querying node (1B).
In each message we allocate 2B for environmental readings
(e.g., temperature, humidity, etc.), 4B for aggregateeslu
(Max, M n andSumn) and 8B for timestamps. ZigBee's
MAC layer [3] dictates a maximum data payload of 104
bytes thus we segment our data packets whenever this is re-
quired.

Energy (mJ)

4.2 Energy for Single-Tuple Answers

In the first experimental series we assess the energy ef-

Energy Consumption for Query Set: ST (for all n sensors)
Dataset:Intel54, n=54, d=14, e=30, link=250kbps
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Figure 3. Energy Consumption for the Intel54
dataset with the query ST.

Table 2. Energy (in mJ) for the Intel54 Dataset

fici f the Mi Ise alqorith dtoi | | ST | MIF | MTA |
iciency o the MicroPulse algorithm compared to |ts_ com- TAG 112022 | 112282 | 112251
petitors TAG and Cougar. We choose to conduct this eval- Cougar 8821250 | 893:239 | 877239
uation in isolation from the rest components (flash, weather MicroPulse 53435 56437 50421

board, etc.) in order to identify the distinct propertiestod
three algorithms we compare.

Figure 3 shows the energy consumption for the Intel54
dataset using the single-tuple query ST. We observe thatifies that certain nodes consume more energy than oth-
TAG requires 11,22F2mJ, which is two orders of mag- ers. This is attributed to the fact that the cost of failures i
nitude more energy than the energy required by MicroPulseCougar is proportional to the depth of the node that caused
(i.e., only 53:35mJ). This is attributed to the fact that the the failure. In particular, failures at a large depth (ictoser
transceiver of a sensor in TAG is enabled fe2.14 sec- to the leaf nodes) will generate a larger chain of waking
onds in each epoch (i.ele/d| = 30/14), while in Mi- windows, thus will be more energy demanding than failures
croPulse it is only enabled foe146ms on average. En-  thatoccur at a small depth (i.e., closer to the sink). We have
abling the transceiver for over two seconds in TAG is clearly repeated the experiment for the MTF and MTA queries and
the driving force behind its inefficiency. Figure 3 also slsow summatrize the results in Table 2.
that the MicroPulse energy curve quickly drops to the mean
value of53m.J within the first epoch (i.e., the suddendrop 4.3 MicroPulse in a Large-Scale Network
at the beginning of the curve). Notice that MicroPulse runs
very much like Cougar during the first epoch but our algo-
rithm then intelligently exploits the waking window cost to
preserve energy.

Finally, Figure 3 shows that the Cougar algorithm re-
quires on average 88250mJ, which is one order of mag-
nitude more than the energy required by MicroPulse. The
disadvantage of the Cougar algorithm originates from the
fact that the parents keep their transceivers enabledalhtil
the children have answered or until the local timet has

In the second experimental series we evaluate the effi-
ciency of MicroPulse in a large-scale sensor network, as
this is provided by the Intel540 dataset. Figure 4, shows
that MicroPulse requires only 3,446mJ on average (i.e., the
mean of all three queries) while Cougar requires as much
as 7,281mJ for the acquisition of values from all 540 nodes.
This shows that MicroPulse retains a significant competi-
tive advantage over Cougar even for larger-scale wireless
_ ) . ) ) . sensor networks. Note that we have omitted the presenta-
expired (in cases of fallure_s). Thus, any fall_ure 'S autemat tion of the TAG algorithm as it has a very high energy cost
cally translated into a chain of delayed waking windows all (i.e., 189, 707m.J).

of which consume more energy than necessary. O'?e final We have repeated the experiment for the MTF and MTA
observation regarding the Cougar algorithm is that it fea- . . . :
gueries and summarize the results in Table 3. For all queries

tures a large standard deviation (i.250m./), which sig- we noticed that the MicroPulse-to-Cougar performance ra-
tio is slightly increased (i.e.47%) compared to the re-

3We configured the child waiting timer to 200ms.
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