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Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-
equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In
recent years, the use of mobility data has demonstrated signiicant impact in various domains including traic management,
urban planning, and health sciences. In this paper, we present the domain of mobility data science. Towards a uniied approach
to mobility data science, we present a pipeline having the following components: mobility data collection, cleaning, analysis,
management, and privacy. For each of these components, we explain how mobility data science difers from general data
science, we survey the current state of the art, and describe open challenges for the research community in the coming years.
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Fig. 1. The Mobility Data Science Pipeline

1 INTRODUCTION

The volume of mobility data being collected has been steadily increasing since the advent of afordable personal
location-enabled mobile devices. Examples of mobility data continuously generated and collected in huge volumes
include: (a) individual sporadic locations obtained from mobile app data and location-based social networks,
(b) individual pedestrians, biking, or driving trajectories constrained by underlying side walks, biking trails, and
road network, respectively, (c) indoor individual or asset tracking data obtained from RFID and bluetooth devices,
(d) athletes movement data in various sports obtained from wearable devices, (e) public transportation, taxis,
ride sharing, and delivery logistics trajectories obtained by location-tracking devices and specially designed
app services, (f) aircraft and vessels trajectories moving in an unconstrained environment (i.e., no underlying
road network) obtained by air and sea traic monitoring services, and (g) animal tracking data moving freely in
the space obtained from physically tagged and remotely sensed animals. Generally speaking, for each moving
object, mobility data is typically available in the form of a sequence of (location, timestamp) pairs. The location
attribute could be as simple as a point, represented by either latitude and longitude coordinates or as relative
coordinates with respect to the underlying space. The location attribute could also be an area, which can represent
the mobility of objects with spatial extents, e.g., locks or group movement.

The ability of understanding and analyzing mobility data is crucial for various widely used important sectors
and applications. In transportation and traic management, analyzing traic data through vehicle mobility helps
in predicting accidents [159], traic congestions [260], and better route planning [51]. In ride sharing and delivery
logistics application, analyzing trip mobility data help in data-driven eco route planning, which results in huge
cost and energy savings [97]. In location-based services, analyzing people movements around the city signiicantly
helps in trip planning activities [219], inding popular tourists sites and restaurants [119], and data-driven routing
and querying [220]. In indoor navigation, understanding how people move indoors helps in understanding
the traic for various stores inside a mall, which is needed in various market research studies [115]. In urban
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planning, driving data can signiicantly help in building highly accurate, reliable, and annotated maps [160] as
well as deciding on good location for various facilities, e.g., restaurants, retail stores, and clinics [208]. In social
computing, analyzing how people move in cities and regions helps in understanding the demand for infrastructure
and energy as a means of reducing inequalities [202]. In disaster response, analyzing crowd movement helps in
preparing for natural disasters through rescuing and evacuation eforts [106]. In health informatics, connected
wearables can monitor and analyze the movement of elderly people, allowing for timely, and potentially life-
saving, interventions [135]. In pandemic prevention, the ability of privacy-preserving individual tracking allows
for contact tracing, which was deemed as cornerstone in limiting pandemic spread [156, 279].
Despite the common goal of acquiring, managing, and generating insights from mobility data, the mobility

data science community is largely fragmented, developing solutions in silos. It stems from a range of disciplines
with expertise in moving object data storage and management [100], geographic information science [89],
spatiotemporal data mining [212], humanmobility modelling [27], ubiquitous computing, computational geometry
and more. The sheer volumes of mobility data along with the immense need of mobility data analysis in various
applications call for employing a complete Data Science pipeline [192] over mobility data. This includes the
whole pipeline of Data Science applications, starting from the data storage and management infrastructure and
going through data collection, data cleaning and preprocessing, and data analysis. Unfortunately, this is not
straightforward as current Data Science systems, tools, and algorithms are not directly applicable to mobility
data. This is mainly due to the fact that these systems, tools, and algorithms, are designed in a generic way to
support any data type, and hence they do not lend themselves to the distinguishing characteristics of mobility
data. Examples of such characteristics include the spatial and temporal dimensions of the data, the rate of updates,
and the privacy requirements. In particular, mobility data is always spatial, where nearby objects are more related
to each other. This is unlike traditional data, where the concept of nearby and locality is not taken into account.
Also, similar to time series data, mobility data is temporal, where one object may have hundreds of updates
to its location, and all updates are related to each other (e.g., one trajectory). This is again unlike traditional
data, where temporal updates of a single object are not frequent and older updates would be of less importance.
Similar to streaming data, mobility data has a high frequency of updates, which is not supported in typical data
science applications. Finally, mobility data is more sensitive to privacy. While privacy-preserving in traditional
data can be achieved by removing (quasi-)identiier attributes, in mobility data, locations by themselves are
considered private information that can reveal not only the users’ identities, but also their behavior, life style,
medical conditions, and work places.

Motivated by ubiquity and sheer volumes of mobility data, the importance of mobility applications, and the lack
of support from current data science pipelines, this paper presents a pipeline for Mobility Data Science. We deine
Mobility Data Science as an interdisciplinary ield that uses scientiic methods, processes, algorithms and systems
to extract or extrapolate knowledge and insights from potentially noisy, structured and unstructured mobility
data, and apply knowledge from mobility data across a broad range of application domains. While currently, the
community of developers, practitioners, and researchers, dealing with mobility data use of-the-shelf data science
techniques and systems to collect, clean, manage, and analyze their mobility data, we irmly believe that this
ends up to sub-bar performance. We urge such community to build its own mobility data science pipeline to
better serve its own purpose. This paper makes the case for the need for a mobility data science pipeline along
with the challenges that need to be addressed to realize it.

2 MOBILITY DATA COLLECTION

The abundance availability of real data is a cornerstone to any data science application, and mobility data
science applications are of no exception. However, it is much easier to collect and ind tons of data for data
science applications than it is the case for mobility data science. In particular, for data science applications,
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well-established research in anonymizing personal data allows wide data sharing. This is to the extent that
governments have released various datasets for public (e.g., Data.gov). In addition, companies already collect
their own inventory data that does not include any personal identiiers, and hence it is suitable to be fed to data
science applications. On the other side, data-driven mobility data science research has been in a constant struggle
with the need for available mobility data. A main reason is that non-aggregated individual human location data
is considered personal identiiable information as it may lead to tracing an individual’s identity. For example, it
has been shown that only a few spatial locations are suicient to uniquely identify individuals even among a
large population of people [204]. As a result, most datasets are collected in aggregated form, which hinders the
deployment of various mobility data science applications. This sections discuss current eforts and challenges of
mobility data collection.

2.1 Eforts in Mobility Data Collection

Before the wide availability of personal digital devices, humanmobility data collectionwas expensive and therefore
datasets were very sparse. With the advent of personal location-enabled devices, many people’s movements have
started leaving digital traces that are being collected either by industry as a means of providing location-based
services [198] or by governmental entries as a means of data analysis, e.g., traic-related studies [234]. However,
this did not result in a similar explosion of publicly available mobility data, mainly due to privacy and data
sharing concerns.
Current eforts in releasing public non-aggregated mobility data is mainly limited to small datasets, small

regions, while removing locations that can lead to one’s whereabouts. This mostly include trips obtained from
taxis, ride sharing services, or public transportation. Some of these datasets include detailed trajectory data
for the following cities (ordered alphabetically): (1) Athens [28]. 500K trajectories collected over 5 days in
downtown Athens, Greece, (2) Beijing 1 [273]. 17+K trajectories with 26 Million GPS points over three years in
Beijing, China, (3) Beijing 2 [261]. 10+K trajectories with 15 Million GPS points over one week in Beijing, China,
(4) Rio [70]. 12+K Buses with detailed trajectories of 118+ Million GPS points over 30 days in Rio de Janeiro, Brazil,
(5) Rome [41]. 320 Taxis with detailed trajectories of 21+ Million GPS points over 30 days in Rome, Italy, (6) San
Francisco 1 [180]. 536 Taxis with detailed trajectories of 11+ Million GPS points over 30 days in San Francisco,
CA, USA, (7) San Francisco 2 [1]. 20+K detailed trajectories with 5+ Million GPS points in San Francisco, CA, USA.
(8) Shenzhen [240]. 664 Taxis with detailed trajectories of 1.1+ Millions GPS points over one day in Shenzhen,
China, (9) Singapore [108]. 84K trajectories with 80+ Million GPS points over a month in Singapore. Other datasets
only include the origin and destination of each trajectory. Examples include the following cities: (1) Austin [194].
1.5 Million trips for a period of 10 months in Austin, TX, USA, (2) Guangdong [258]. 2.5 Million trips over one day
in Guangdong Province, China, (3) NYC [169]. 1.5 Million Taxi trips over a period of 6 months in New York City,
NY, USA, (4) Porto [181]. 426K Taxi trips over three months in Porto, Portugal,
Other than trip and trajectory road network data, there are tons of available biking data across the world,

including tens of millions trips in Bay Area [? ], Boston [? ], Chicago [71], Columbus [62]. London [136],
Los Angeles [38], Madrid [142], Minneapolis [165], New York City [60], Philadelphia [112], Portland [39], and
Washington D.C. [44]. There are also available public marine traic that include detailed vessel trajectories
(e.g. [177]), sport data sets for basketball and soccer that include a variety of events took place in major leagues
within one season [175], and indoor data about the behaviors of nearly 30 Year-10 students and their teachers
collected over four weeks in Australia, with spatial reference (associations to rooms) and highly granular wearable
data [84].
However, there are some large-scale aggregated datasets on a coarse granularity that can help in high level

analysis, but not to get insight details of mobility data. Examples of such aggregate data include origin-destination
employment statistics in the USA that contains home-to-work commuting lows aggregated to census tract
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level [91], cell phone trace datasets capturing the locations of individuals aggregated to their nearest cell
tower [237], foot traic data of check-ins of 35 million anonymized mobile devices in USA are aggregated to
census block groups [199], and a global database about aggregate indoor occupant behavior, composed of 34
datasets from 15 countries and 39 institutions, collected by occupancy sensors that measure the occupancy
count of each space being monitored [73]. An additional source of human mobility data is location-based social
network (LBSN) data. LBSN data captures both 1) discrete check-ins between users and locations, and 2) a social
network between users. This dimension of location bridges the gap between the physical world and online
social networking services [271]. However, it has been shown existing LBSN data sets are too small to broadly
understand, analyze, and predict human behavior [127].

The lack of available mobility data, combined with the need to stress test various research ideas have motivated
various research groups to either develop their own data simulators or develop publicly available simulators that
can also be used by other researchers for benchmark datasets. However, such simulators were mainly designed to
test speciic aspects of research, but not meant to be representative of real mobility data. For example, various
simulators were mainly designed to test new index structures for mobility data, query processing algorithms,
and system infrastructure scalability for managing spatiotemporal data (e.g., [154]). Within the transportation
community, more ine granularity simulators (e.g., [34]) were proposed to study traic infrastructure, but none of
them is meant to provide comprehensive mobility study.

2.2 Challenges in Mobility Data Collection

This section presents some of the challenges in mobility data collection that the community needs to address
towards realizing the pipeline of mobility data science.

Challenge 1. Mobility Data Privacy. In most cases, (human) mobility data is sensitive and considered as personal
identiiable information. This puts major privacy concerns on data sharing. Hence, any attempt to collect ine
granularity detailed trajectory or human mobility data must irst address the privacy challenge. Though the
general topic of data privacy has been well studied in literature with practical solutions, such solutions are not
directly applicable to the case of mobility data. In particular, mobility data gives rise to the TUL (Trajectory-User
Linking) problem [86]. To protect users’ actual locations, while preserving meaningful mobility information for
various learning tasks, one may wish to generate realistic motions based on real-world mobility datasets [274].
Since privacy is a core problem in mobility data that does not only impact data collection, but also impacts all
other components of the mobility data science pipeline, we dedicate Section 6 to discuss mobility data privacy in
details.

Challenge 2. Mobility Data Bias. Mobility data collection procedures sufer from all kinds of bias. For example,
mobile applications data and mobile phone network data are biased against people who do not use smart phones
or use prepaid plans. Most traic counting sensors are installed to count cars but do not count pedestrians,
cyclists, wheelchairs, or similar. Cells in mobile phone networks vary widely in size. The data traces that are
usually collected in cellular networks are cellular themselves. This afects rural areas with larger cells more than
urban areas. Volunteered tracking data is biased towards technically savvy people. Sports tracking data is biased
towards health conscious middle and upper class. It is important to understand, measure, and mitigate data bias in
mobility datasets to ensure that actions and policies that are based on mobility data science results are equitable,
fair, and include vulnerable populations [207].

Challenge 3. Incentives for Data Sharing. Users need to have good incentives to share their locations. To some
degree, users kind of agree to share their locations with commercial entities to get location-based services, ride
sharing, cell phone coverage, delivery, among other services. However, it is understood that users would be
reluctant to publicly share their mobility traces. Meanwhile, the biking community have shown a great example
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for sharing their biking trails. A main reason is that, in many places of the world, most of these trails are not really
home-to-work commuting, but it is more of an outdoor activities. Hence, sharing biking trails helps fellow bikers
in knowing the conditions of biking trails, which is a great incentive for sharing. More incentives need to be given
for drivers to share their mobility traces, even for sporadic trips that do not lead to identiiable locations. Sharing
could be for part of the trajectory where rewards are given back based on the sharing length and resolution. A
gamiication concept may be exploited to encourage more participants to share.

Challenge 4. Simulated Mobility Data. The dire need to mobility data along with the diiculty of obtaining them
made it apparent that simulated synthetic data is immensely needed to enrich and train mobility data science
applications. However, the challenge is to go beyond earlier attempts of simulating data for testing very speciic
techniques to simulating data for the general purpose of having realistic life scenarios. Empowered by modern
computational capabilities that make it possible to simulate large populations, the mobility community should
work with social scientists to create realistic individual-level human mobility data. Lessons have been learned
from the experience of the deep learning community, by applying generative adversarial networks (GANs) for
trajectory generation [264]. However, it is unclear as of yet, how to measure the realism of mobility data. If
synthetic mobility data is too realistic, for example, due to training on real human trajectories, it may invade
someone’s privacy if, for instance, it shows where members of a given household actually visit. On the lipside,
benchmark data that is too disconnected from the real-world and does not represent realistic human behavior
would not allow to generalize to the real-world.
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3 MOBILITY DATA CLEANING

Until the early 21st century, location data and mobility data available for geographic information science (GIS)
was mainly collected, curated, standardized [79, 80], and published by authoritative sources such as the United
States Geological Survey (USGS) [233]. Now, data used for mobility data science is often obtained from sources of
volunteered geographic information (VGI) [218]. Such data is contributed by millions of individual users (more
than ten million contributors in the case of OpenStreetMap [171]) and is rarely curated. Mobility data collected
from such sources is highly uncertain due to physical limitations of sensing devices, due to obsoleteness of
observations, and in many cases plain incorrect due to deliberate misinformation [158]. Consequentially, our
ability to unearth valuable knowledge from large sets of mobility data is often impaired by the uncertainty of the
data which geography has been named the “the Achilles heel of GISž [90].
Data cleaning and preprocessing is a milestone to all data science. In fact, it has been reported that data

scientists spend more than 80% of their time in data cleaning and preparations [163]. As a result, there are
huge eforts in the data science community dedicated to developing various data cleaning algorithms [57] and
full-ledged systems [68]. Mobility data is of no exception in terms of its need for data cleaning and preparation
procedures. But for numerous reasons, data cleaning and preparation yields unique challenges. This section
discusses current eforts and challenges of mobility data cleaning.

3.1 Eforts in Mobility Data Cleaning

A recent survey [126] and data quality assessment tool [92] have discussed various sorts of errors that negatively
impact data quality in spatial and mobile environments. Motivated by the inaccuracy of location tracking devices,
several eforts were dedicated to address: (a) the spatial inherent inaccuracy of GPS devices and (b) the uncertainty
of moving objects whereabouts between each two known locations, which is a result of low sampling rates due
to bandwidth and battery limitations.

As the spatial inaccuracy indicates erroneous GPS coordinates, the eforts to identify and correct such coordi-
nates have focused on either inding and eliminating outliers or map matching all coordinates to an underlying
ixed and trusted infrastructure (e.g., road network map). For the case of map matching, existing eforts aim to
match/snap all GPS traces to an underlying road network [42, 46]. Proposed techniques vary from as simple as
snapping each point to its nearest road to applying Markov Chain to identify the most probable road segment that
each point should be snapped to. In case there is no underlying road infrastructure (e.g., marine transportation or
animal movement), outlier detection techniques are used to identify and remove erroneous points [226].

Irrespective of the collection method and device settings, there is also indispensable uncertainty in movement
data caused by their discreteness. Since time is continuous, the data cannot refer to every possible instant. For
any two successive instants, there is a temporal gap where the whereabouts of the moving objects are unknown.
To overcome such location uncertainty, several eforts were dedicated to modeling the uncertainty of mobility
data surveyed in [280].
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3.2 Challenges in Mobility Data Cleaning

This section delves into some challenges linked to cleaning mobility data that the community need to tackle.

Challenge 5. Inaccuracy in the Movement Space Infrastructure. A unique challenge in mobility data is that in
many cases, its reference points are the ones that are inaccurate. In particular, mobility data that represent
movement on a road network may be more accurate than the road network itself. Road networks, like any other
type of data, sufer from all sorts of inaccuracy, and may not be even available in many places [161]. In fact,
Microsoft has recently announced that it has found more than one million kilometers of roads missing from
current maps [149]. This is why there is a whole area of industrial and academic research about map inference,
which aims to infer (all or missing parts) of the road network from either satellite images [29] or trajectory
data [37]. However, almost all of these techniques focus on making accurate maps in terms of topology. There
need to be more eforts on map inference algorithms that go beyond inferring the map topology to inferring map
metadata (e.g., road speed, traic lights, number of lanes, and turns), without which, mobility data would not be
accurate as its road network reference itself is missing important data. A major step towards cleaning mobility
data would be to irst clean its reference map.

Challenge 6. Filling in Temporal Mobility Gaps. As mentioned earlier, there are lots of eforts dedicated to
modeling the uncertainty of moving objects whereabouts between each two consecutive time instances. However,
uncertainty poses diferent challenges to down stream functions and applications, including the need to develop
new techniques for indexing, query processing, and data analysis for various uncertainty models. One way to
overcome this is to try to infer the actual whereabouts of a moving objects between any two time instances with
known locations. There are already several eforts to insert artiicial points between each two consecutive trajec-
tory points, with the promise that these points act as if the trajectory was collected in a very high sampling rate.
This process has various names, e.g., trajectory interpolation [137, 270], trajectory completion [131], trajectory
data cleaning [263], trajectory restoration [125], trajectory map matching [42], trajectory recovery [245], and
trajectory imputation [77]. However, the large majority of such work rely on matching the trajectory points on
the underlying road network, where the imputation becomes inding the road network shortest path between
each two consecutive trajectory points. Unfortunately, this is not applicable to the case where the road network
is unknown, untrusted, or inaccurate. Hence, more recent attempts try to do data-driven trajectory imputation
without relying on the underlying road network [77, 81]. However, these techniques are either not scalable to
city-scale trajectory datasets, or require dense historical data that derives its imputation process. There is an
immense need to develop a scalable, accurate, and ine-grained imputation that almost mimics a continuous data
stream of trajectory locations.
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4 MOBILITY DATA ANALYTICS

Spatial data is special. Unlike non-spatial features, location attributes (e.g., longitude and latitude) rarely exhibit
linear or other simple functional relationships to variables of interest. It rarely makes sense to model a variable
of interest directly in relation to spatial attributes. Instead, it is distances that matter. According to Tobler’s irst
rule of Geography, “everything is related to everything else, but closer things are more related than things that
are far apartž [223]. For mobility data, proximity is further extended with time, i.e., objects that are close in
space and time. In addition to this concept of spatiotemporal autocorrelation, what makes mobility data even
more challenging to handle is that it is often observed from humans whose behavior can often be irrational and
diicult to explain. As Nobel Prize laureate Murray Gell-Mann famously said, “Think how hard physics would be
if particles could thinkž [173]. But unlike in physics, the “particlesž of interest are often humans who can think.
Data collection sensors have the capability to capture the spatiotemporal locations of the moving objects, but
not their behavioral aspects. These diiculties require new paradigms, techniques, and algorithms to analyze
and learn from the spatiotemporal data, and that can explain and predict the associated behavior. This section
discusses current eforts and challenges of mobility data analysis.

4.1 Eforts in Mobility Data Analytics

Mobility data analytics has already gained momentum in research in the recent years. Dedicated workshops
have existed in major conferences; including the ACM SIGSPATIAL International Workshop on Analytics for
Big Geospatial Data (BigSpatial) since 2011 [211], the Big Mobility Data Analytics (BMDA) workshop in EDBT
since 2018 [178], and the ACM SIGSPATIAL International Workshop on Animal Movement Ecology and Human
Mobility (HANIMOB)@SIGSPATIAL since 2021 [172]. Surveys on the status of research exist [20, 200].

Mobility data analytics encompasses various application domains and involves analyzing data from diferent ś
sources such as urban [267], maritime [61], aviation [59], animal movement [172], and indoor movement [115].
Among these diferent themes urban mobility stands out with a fairly large body of research including green
routing [10], traic anomaly detection [174], hot spot and hot path analysis [167], road traic prediction [162], and
travel time estimation [242]. Trajectories of moving objects have been used as means to create and continuously
update the road network [160]. Public transport systems also collect ticketing data in the form of passenger
check-ins, sometimes also associated with check-outs. This data has been shown very useful to transit planners in
understanding passenger demand and movement patterns in daily operations as well as in the strategic long-term
planning of the network [229]. Personal mobility of individuals is also a subject of analysis that includes analyses,
e.g., activity recognition [50, 176], personalized routing [67], matching with ride-sharing services [19], and
crowd-sourcing [179].

While a signiicant portion of research focuses on understanding and analyzing data through analytics, there
are also important eforts dedicated to developing generic analysis tools for spatiotemporal data that are agnostic
to the application domain. Eforts on generic methods for mobility data analysis include, among many others,
trajectory clustering [246], trajectory similarity measures [226], outlier detection [102], transportation mode
classiication [40], spatiotemporal pattern detection [201], and trajectory completion [122]. However, and despite
these many research eforts towards analyzing mobility data, there is lack of common data analysis tools and
systems. The scientiic software environment for mobility data analysis is rather fragmented. For example, [118]
lists 58 packages in their review of R packages for movement and [93] reviews Python libraries for movement
data analysis and visualization.
Recent years have seen a notable increase on research on deep learning for mobility data analysis [138, 252].

This brought an increased adoption of various paradigms and (adapted versions of) architectures used in other
areas where deep learning has brought improvements in tasks, e.g., clustering/classiication [150], prediction [123]
and recommendation [30], information propagation [276], etc. For example, Generative Adversarial Network
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(GAN) based architectures have been used recently to learn representations of trajectories and generate synthetic
trajectories techniques [85]. Given the introduction of Transformers [235], transformed-based approaches have
also been used for mobility modelling and trajectory prediction [256], given the sequential properties of mobility
data. Other deep learning approaches such as contrastive learning [275] have also been exploited in mobile data
settings, along with investigation of the impact/beneits of representation learning [87].

4.2 Challenges in Mobility Data Analysis

This section highlights open problems related to mobility data analysis, that needs consideration from the
community.

Challenge 7. ML for Mobility Data. The state-of-the-art deep learning (DL) models, such as Transformers [235]
were not developed initially for mobility data science in mind. They were derived from NLP and computer vision
domains. The community needs to provide best-case practices for doing ML (and DL) for mobility data.

A major hurdle, and a research opportunity as well, is that existing ML and analytics tools, e.g., TensorFlow, or
PyTorch, do not support location and mobility as base data types to reason about. So, even the basic analysis,
such as clustering, classiication, similarity, etc, need to be extended when mobility data is involved. These tasks,
as well as higher-level analysis, can not be totally independent. Instead, common basic building blocks could
have an impact on all or some of them. For example, exploring the efectiveness of embedding for mobility data
analysis is a basic block that could impact diferent ML-based analysis tasks. This raises a challenge to build
analysis primitives and common building blocks for applications that could shape a framework of ML-based
mobility data analysis.
Another major hurdle is the robustness in data-driven mobility models. It is widely known that data-driven

models (as in the case of ML or DL) are only as good as the data that it is used to be trained on. However, given the
changes of mobility behaviors, such as the COVID-19 pandemic and the associated lockdowns, and environmental
events and disasters, traditional ML based, and even recent DL based, methods are no longer robust. The models’
performance deteriorate in unseen events, especially as new behaviors emerge and then persist. Recent efort
includes the incorporation of ‘contextual-awareness’ and ‘memory’ in an enhanced event-aware spatiotemporal
network [247] for predicting mobility in multiple modes of transportation including taxi, cycling, subway during
the unprecedented events like COVID lockdowns, or snowstorms, as it emerged and up to 30 days post the event.
However, more work to be done on modelling and understanding mobility behavior, that are robust to changes
due to societal events.

Challenge 8. Progressing from Next Location Prediction to Movement Behavior Understanding. Due to the wide
availability of aggregated check-in and foot-traic data, many researchers focus on the problem of location
prediction, e.g., [255]. Leveraging predictions such as “User Xwill visit Cofee Shop A nextž or “32±4 users will visit
Cofee Shop A in the next hourž has some direct applications. It could be useful for providing information about
parking “parking at location X appears to be a problem today, so consider ...ž, for battery charging opportunities, or
for providing information about collective transportation status “Metro station X that you are expected to visit is
closed for repairs, so instead ...ž. One could provide a new transportation schedule and departure time in response
to problems at an anticipated future location of a user, just like airlines at times update your itinerary in case
of issues. Earlier work has been based on data mining techniques to detect periodic behavior, e.g., [36, 76, 117].
Beyond predicting locations, if we understand the underlying behavior, at the individual-, group-, or population-
scales, that leads to these predictions, we could understand why one cofee shop chain has increasing visitor rates
(e.g., due to a movement towards organic cofee sold by the cofee shop). Through inferring from the data about
such behaviors, only then we can take corresponding actions not only to predict locations, but also to prescribe
actions (e.g., ofering more organic cofee) to improve visitor rates. This understanding of (human) behavior will
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broadly afect applications using mobility data. Traditional spatiotemporal data science allows for predictive
analytics to predict the future. In contrast, mobility data science enables prescriptive analytics by understanding
the underlying human behavior to devise actions and policies that aim to achieve desirable targets.
An open problem for understanding mobility behaviour data is the lack of labels or human annotation to

provide insights on the actual observations. There are several other tricks that have been proposed, including
cross-domain data fusion as well as developing interpretability mechanisms for machine learning or deep learning
models. When geographical information is fused together with contextual features and social behaviours, not only
location prediction can be improved, but also insights can be provided about the underlying visitor behavior [255],
even if no human-labelled data are provided about the mobility behaviors.

Therefore, explainability of AI and machine learning models that have underpinned many of such predictive
behavior models remain an open challenge, especially since deep learning models are black boxes. One such
approach for deep-learning-based models is disentangled representation learning, and a recent work [268] shows
that the disentanglement of latent spatiotemporal factors can assist the explainability of how the underlying
latent factors learned by deep learning models are correlated. It can also be used for dimensionality reduction,
and assist in few-shot learning cases.

Challenge 9. Visual Analytics. Visualization and exploratory analysis of mobility data has long been a hot topic
in visual analytics [15]. More recently, the trend turned to combining visualization with modeling and simulation
to support decision making [124]. This kind of research is by necessity application-oriented, while much less is
done on developing more general ideas and approaches.
One general research problem that has only been slightly touched in visual analytics but not systematically

addressed is human involvement in real-time analysis of big mobility data. Is it possible to deine realistic scenarios
for involving human intelligence in big data analytics taking into account the cognitive limitations of human
analysts with regard to the amount of information that can be perceived, speed of processing, and time required
for analytical reasoning and contributing to the analysis process? Also how to combine computational methods
of analysis, such as ML, with human expert knowledge and reasoning? The involvement of human intelligence
is limited to thoughtful data preparation, feature selection, parameter setting, and so on. It would be great to
ind ways to make more direct and efective use of human-possessed concepts and, particularly, knowledge of
causal relationships. Hence, a grand research challenge for visual mobility analytics is to develop approaches to
understanding and modeling mobility behaviors from low-level movement data, such as trajectories of moving
entities.

The following research problem is how to analyze behaviors after they have been extracted from elementary
movement data and represented by appropriate data structures. A conceptual framework should be developed
to enable deining the types of conceivable patterns of movement behavior. This will provide orientation for
developing visualization techniques facilitating visual discovery of behavioral patterns, as well as algorithmic
methods for detection of speciied types of patterns. These techniques and methods should be incorporated in
systems and worklows for analyzing the contexts in which various patterns take place and developing models
for describing and predicting mobility behaviors depending on the context.

5 MOBILITY DATA MANAGEMENT INFRASTRUCTURE

Classical data management systems have been designed for generic data types, where spatial and temporal data
can be supported as new additional types. Yet, the core functionality of the data management engine does not
acknowledge the spatial and temporal properties of mobility data. For example, mobility data calls for storing
and querying locations of objects that evolve over time. The evolution can be in the location, the extent, and/or
the properties of the object. The evolution can happen in discrete steps, e.g., check-ins, or in a continuous form.
Thus, it is desired that the data management platform is able to represent the history, the current location, and
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possibly the near future of the moving object. Another example is classical index structures that are built with the
assumption that the read workload is signiicantly higher than the write workload, and hence the index structure
does not change often. Meanwhile, mobility data exhibits a diferent workload where the write workload (e.g.,
object location update) is signiicantly higher than the read workload, which makes all classical index structures
simply not applicable to mobility data. A third example is that simple queries over mobility data, e.g., nearest
neighbor search can be supported by classical data management systems by inding the distance between the
user location and all other objects, sorting all objects based on that distance, and getting the closest one. This
cumbersome approach is mainly due to the lack of having a specialized nearest-neighbor operator. Should we
have one, that operator can seamlessly integrate with the query executor and optimize of a data management
engine to eiciently support a pretty important query in most data mobility applications. Finally, a last example
is that classical methods for scaling up data management in distributed environments rely on data distribution,
mostly based on the data keys. This does not work well in scaling up mobility data as it is always desired to
distribute mobility data in a way that spatially and temporally nearby objects are grouped together in the same
cluster or computing node. This sections discusses current eforts and challenges of mobility data management.

5.1 Eforts in Mobility Data Management

There has already been extensive research in all layers of mobility data management infrastructure. On the data
modeling aspect, early models based on the constraint databases model aim to support simple moving objects (i.e.,
points), e.g., [94]. More complex data types (e.g., moving regions) have been supported by later models based on
abstract data types, e.g., [101] that is still being used in recent systems, e.g., [278]. More recent eforts have been
introduced to capture the semantics of trajectories of moving objects. Other models were also proposed to capture
specialized modes of movement, including indoor environments, e.g., [114], network constrained, e.g., [99], fuzzy
trajectories, e.g., [227], and detecting periodic moving patterns, e.g., [33, 36, 76, 117]. In terms of indexing, tens
of index structures have been proposed to support eicient indexing, storage, and retrieval for spatiotemporal
data as either historical data, current locations, or continuously updated locations, e.g., [144, 147, 155, 164]. This
forms the infrastructure support for various spatiotemporal query processing techniques for various query
operators over moving objects, including spatiotemporal range queries [157], spatiotemporal nearest-neighbor
queries, e.g., [11ś13, 216, 254], reverse nearest neighbor queries [35], skyline queries [109], and scalable spatial
and spatiotemporal joins, e.g., [249, 253].
In terms of academic full-ledged systems, the SECONDO system has been introduced in the early 2000 as a

comprehensive testbed for distributed moving object databases covering all aspects of data modeling, indexing,
and querying [98]. More recently, MobilityDB, implemented on PostGIS, has been introduced as a scalable system
with a wider functionality on moving object databases [230, 278]. In terms of Big Data systems, ST-Hadoop [8],
SUMMIT [7] and HadoopTrajectory [22] systems extend the Hadoop system to support spatial-temporal data,
and trajectories, respectively, while other systems, e.g., [66, 145, 146], extend the Twitter Storm distributed data
streaming system to support streamed location data. TrajSpark [266], Dita [209], and TrajMesa [128] extend
the Spark system to support various index structures and query operations over trajectory data. SharkDB [244]
extends in-memory column-oriented storage engines to support trajectories. In the open-source community and
in industry, PostGIS [182] supports very basic trajectory functions, Oracle spatial supports streaming point data
to capture real time mobility [170], while Microsoft Azure [25] supports storing trajectory data in Azure table
and utilizing Azure Redis for indexing. Distributed-MobilityDB [23] integrates in the one hand the trajectory
data management of MobilityDB with a distributed PostgreSQL database to provide a distributed moving object
database.
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5.2 Challenges in Mobility Data Management Infrastructure

Though there is already a lot of work in various components of mobility data management infrastructure, there
is an apparent lack of integrated systems that ofer comprehensive functionality to end users, encapsulated in
full-ledged systems that support mobility data science. Hence, the challenges in this section mainly focus on the
system building aspect.

Challenge 10. Building Systems with Mobility Data in Mind. Location data has almost always been supported
in data systems as an afterthought problem. Many systems, e.g., Postgres, Storm, Spark, and Hadoop, have not
been originally designed with location data support in mind. What typically happens is that spatial data types
get augmented into tuple-oriented systems to support the location data type. For example, a restaurant tuple
that describes various attributes of a restaurant is augmented with the latitude and longitude of the location
attribute of the restaurant to support location services. Spatial indexes are provided to speedup the access to
these attributes, and some accompanying spatial operators are provided to operate on the location attributes to
provide location services, e.g., range or k-nearest-neighbor searches. While this approach works to some extent,
systems coming out of such approach end up with sub par performance for spatial data, and hence for mobility
data. Given the myriad of applications that rely on mobility data, it is important that systems are extended with
native support for locations and mobility data. So, mobility data types and operations should be integrated in the
core of these systems, and not to be considered as an afterthought problem. This can go through all kinds of
systems, starting from database management systems that need to be spatially- and temporally-aware to support
mobility data to scalable big data and NoSQL systems, where injecting spatial- and temporal-awareness into their
core functionality will inherit their scalability to support scalable mobility data science.

Challenge 11. Location Data as First-class Citizens. Having locations as core of mobility data calls for treating
location data as a irst-class citizen in a location data system that at the same time can be extended to support
other data types [16]. These location data systems can be presented as Location+X systems, e.g., as in [16],
where the data types “Xž can be keywords (e.g., to support spatial-keywords and tweets), graphs (e.g., to support
road-network data), relational data (e.g., to support descriptions of spatial data objects), click streams (e.g., to
support check-in data), document data (e.g., to support points of interest and documents that describe them),
annotated trajectories (e.g., location + time + textual annotations), among others. In many location services,
more than one data type X may need to be supported, e.g., a graph data type combined with a document or
keyword data types, which calls for a multi-model-like data system. This gives rise to an eco-system where
location is at the core with some form of an extensible multi-model data system that supports the multitude of
data types “Xž. However, current multi-model data system technology is lacking in several aspects. First, they
do not support data streaming that is a cornerstone in mobility data due to the online streamed locations of
moving objects. Second, we do not want to fall into the trap of adopting existing multi-model technologies that
may afect location being a irst-class citizen. However, the need for supporting multi-models in one seamlessly
integrated location+X system remains a necessity. In addition to supporting location data via a native location+X
engine, an ecosystem for mobility data would also include many important utilities to facilitate a broad spectrum
of location service applications. From the input data side, to help navigate the vast amounts of available location
datasets, and discover the right data sets for a given task, a location dataset lake infrastructure and location
dataset discovery, cleaning, and integration facilities are needed. From the presentation side, a comprehensive
visualization suite is envisioned to support visualizations for combinations of spatial and temporal data analytics
on top of location data.

Challenge 12. Streaming, Batch, and Hybrid Workloads. Motivated by the application needs, mobility data
management need to support both batch and real-time data through all systems layers from digesting the data
to analyzing and visualizing it. For example, a common requirement is to visualize the positions of a leet of

ACM Trans. Spatial Algorithms Syst.



16 • Mokbel, Sakr, Xiong, Züfle et al.

vehicles in real time, which only requires access to the most recent positions of the vehicles. Yet, at the same
time, there is a need to perform batch analytics on the full trajectory of these vehicles (e.g., to assess whether the
trajectories exhibit some unexpected behavior). Generally speaking, the need to have both real-time and historical
data has led to the development of the data warehouse domain, where operational databases cover the real-time
Online Transaction processing (OLTP) while data warehouses cover the historical Online Analytical Processing
(OLAP). Since having two diferent systems for the two kinds of workloads is very costly, a new approach referred
to as Hybrid Transactional and Analytical Processing (HTAP) has been recently proposed. However, mobility
data exhibits pretty diferent workloads from other data, where streaming data is kind of dominant in terms of
objects continuously streaming their new locations. Meanwhile, historical data is not of less importance and are
continuously appended. While some eforts have been spend in the direction of write-optimized indexing for
location data, e.g., as in [213], more research eforts need to be spent to adopt the concepts behind HTAP systems
to support the nature of mobility data.

6 MOBILITY DATA PRIVACY

As we discussed in Challenge 1, mobility data privacy is a core problem in the mobility data science pipeline.
Studies have shown that location data could reveal sensitive personal information such as home and workplace,
religious and sexual inclinations [185]. As localization technology advances and extremely ine-grained location
tracking is being enabled, it may even reveal products of interest in the stores we have visited, doctors we saw
at a hospital, book shelves of interest in a library, artifacts observed in a museum, and generally anything that
might publicize our preferences, beliefs and habits. Recent survey has shown that 78% smartphone users among
180 participants believe that Apps accessing their location pose privacy threats [47].

While there are many privacy-preserving data collection and data analysis techniques developed for personal
data, mobility data introduces unique challenges due to 1) spatiotemporal correlations in the mobility data which
often results in increased privacy cost due to privacy composition for correlated data or downgraded utility for
downstream applications, 2) complex location semantics (e.g., corresponding POIs of locations) and mobility
behaviors (e.g., regular vs. one-time visit of a location) which existing privacy deinitions may not be able to
capture, and 3) diverse and emerging application scenarios such as contact tracing using mobility data for which
existing privacy algorithms designed for aggregate data analytics are not suitable. In this section, we briely
review existing privacy notions and techniques developed for location and mobility data and discuss several open
challenges.

6.1 Eforts in Mobility Data Privacy

We categorize existing techniques in mobility data privacy into two main settings corresponding to our data
pipeline: 1) local setting (data collection stage), and 2) central setting (data analysis stage). In the local setting, the
mobility service provider that collects mobility data is assumed to be untrusted, hence each mobile user or entity
can apply privacy-preserving mechanisms before the data is collected by the service provider. In the central or
global setting, the mobility service provider is assumed to be trusted and collects the raw mobility data. The
provider can apply privacy-preserving mechanisms for statistical analysis, and share aggregated data, machine
learning models trained from the data, or synthetic data mimicing the original data to untrusted third parties.
Local Setting. In recent years, local diferential privacy (LDP), the local variant of diferential privacy, [63, 95]
has become the de facto standard for preserving privacy at data collection stage. Each user can perturb her
raw data using an LDP mechanism before uploading it to an untrusted server. Most existing mechanisms are
designed to ensure utility for aggregate queries or analytics (e.g., frequency or density estimation) and requires
the aggregation of the perturbed values from a large group of users, while the individual perturbed value may not
provide much utility. Several works applied existing LDP schemes to location data but the utility is poor [120, 269].
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Other works relaxed LDP to personalized LDP [52]. Recent works developed improved LDP mechanisms for
location data with better utility [241].

In addition to support aggregate data analytics, location based services (LBS) including range queries, spatial
crowdsourcing, and the emerging contact tracing for pandemic control, require the precision of the perturbed
locations themselves. Geo-indistinguishability (GeoInd) [14] relaxes LDP for location data which requires the
locations to be indistinguishable only within a radius and the indistinguishabilty is scaled by their distances,
providing better privacy utility tradeof for LBS. Later works extended GeoInd to account for temporal correlations
between consecutive locations of mobile users [251] and protection of customizable spatiotemporal activities
instead of raw locations or trajectories [43]. Other works applied the GeoInd mechanisms and variants for privacy-
enhanced spatial crowdsourcing and contact tracing [64, 222]. Besides statistical privacy techniques, Private
Information Retrieval (PIR) and secure multiparty computation (MPC) techniques have also been developed to
allow LBS queries such as range queries and contact tracing without revealing individual locations [6, 56, 88, 188],
but are generally more computationally expensive and need to be designed for each diferent query.
Global Setting. Many works have applied diferential privacy (DP) for computing and publishing aggregate
mobility data. Compared to DP algorithms for tabular data, they typically exploit the hierarchical structure
of locations and sequential patterns of trajectories to improve utility [2, 49, 151, 186, 206]. Some works also
utilized the DP aggregates for task assignment in spatial crowdsourcing [221]. In practice, mobility data providers
have started sharing aggregated mobility datasets with DP, esp. in response to the pandemic, such as Meta’s
population density maps and Movement Range maps, Google’s COVID-19 Community Mobility Reports, and
SafeGraph’s Patterns [24]. Other works have applied DP for training machine learning models using mobility
data, for example, for location prediction [5]. Another line of work attempts to generate synthetic trajectories or
mobility data based on raw trajectories with formal DP guarantees [104, 243]. From the privacy attack side, recent
works demonstrated the possibility of membership inference attacks on aggregate location data and linking
attacks, and the defense power of DP against some of these attacks, reinforcing the need for ensuring rigorous
privacy even for seemingly anonymous aggregate mobility data and machine learning models trained from
mobility data [116, 184].
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6.2 Challenges in Mobility Data Privacy

This section highlights open problems related to mobility data privacy, that needs consideration from the
community.

Challenge 12. Threat Models and Privacy Deinitions. The irst challenge for mobility data privacy is the need to
understand the threat models and adopt or deine proper criteria by which to enforce privacy. We need to deine
irst what needs to be protected (i.e., the sensitive information). This may vary for diferent mobile users and
applications. It may be the exact location coordinates of a user at a given time (most existing eforts focus on this).
It may also be the association of a user with a sensitive place, co-location of two users (while it’s okay for the users
to reveal the exact location coordinates), or spatiotemporal activities of a user (e.g., stay at a place, or a trajectory).
When deining privacy models and designing subsequent privacy mechanisms, there will (almost always) be
attacks based on side channel information exploitation. While privacy notions like DP typically assumes the
worst case which also means sacriiced utility, relaxed versions may be needed given speciic threat models to
enhance the privacy and utility tradeof.

Besides developing rigorous privacy enhancing mechanisms, it is equally important to understand the privacy
risks and the empirical defense power of the privacy enhancing technology (PETs). While there have been some
work on privacy attacks on aggregate mobility data [183], more work is needed to understand what sensitive
information may be revealed and reconstructed from mobility data based models, e.g., if membership inference
attacks or feature reconstruction attacks [82, 214] can be carried out, and potentially build benchmark attacks
which can be used to audit the privacy risk of mobility data science systems and privacy mechanisms.

Challenge 13. Privacy and Utility Tradeof and Other Factors. When designing privacy mechanisms for mobility
data collection and analysis, it is important to consider the utility of the privacy protected data for the downstream
applications. For LBS (as typical in the local setting), the utility needs to be measured by the precision or accuracy
of range queries for POI search, or contact detection for contact tracing (instead of how accurate the perturbed
location is from the original location for which most algorithms following geoInd are focused on). Hybrid methods
that combine DP and cryptographic techniques may be needed esp. for critical applications like contact tracing
and public health [56]. For aggregate data analytics and machine learning applications using mobility data (in
both local and global setting), the utility need to be measured by the accuracy of the statistics (e.g., frequency or
density estimation for which most existing work focus on), the trained model, or the idelity of the synthetic
data. As a result, the algorithms need to be designed to optimize the corresponding utility and many remain an
open challenge. For example, existing methods for DP trajectory synthesization are mainly based on statistical
models or low-order Markov models and perform well on some utility metrics [104, 243]. While there are more
powerful generative adversarial network (GAN) based models or difusion models for generating more realistic
synthetic trajectories [138, 277], ensuring formal DP for these models would result in deteriorated utility due to
the complexity of the models. Designing methods for optimal privacy utility tradeof remains an open challenge.

In addition to the privacy and utility tradeof, privacy enhancing technology may exacerbate bias in the data
or learning algorithms. Mobility data may have inherent bias as we discussed in Challenge 2. Data analysis
algorithms may also have unfair performance for groups that are underrepresented in training data. It has been
demonstrated that learning with DP could exacerbate such unfairness, i.e. underrepresented groups sufer from
worse privacy/utility trade-ofs [21]. Research is needed to understand such impact on mobility data and design
privacy algorithms to optimize privacy utility tradeof while ensuring the fairness.

Challenge 14. Explainability and Societal Education. Another important challenge of mobility data privacy is to
improve the explainability of privacy deinitions and mechanisms and communicate them to the stakeholders
including mobile users (data contributors), mobility service providers, and data analysts. This is a general
challenge for privacy enhancing technology, but more so for mobility data given the complex semantics of
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location information and diverse applications as we mentioned. DP-compliant algorithms and location privacy
models (such as Geo-Ind) as described earlier use privacy parameters to control the trade-of between privacy
guarantee and the utility of the private outputs. However, there is a signiicant gap between the theory and
practice of DP: we lack principles and guidelines for choosing privacy parameters when collecting or processing
mobility data using DP techniques in the real world. While the technology companies have employed DP in
releasing the mobility datasets as we discussed earlier, the choice of the privacy parameter and the associated
noise and uncertainty are often not precisely speciied or uniform across companies. This makes it diicult for
the downstream applications to quantify the uncertainty of the analysis result.
The parameter ϵ of DP is mathematically deined but not well-aligned with the stakeholders’ interests. Even

for the same ϵ , the privacy guarantees could be diferent based on the diferent variants of DP and algorithms at
hand. In addition, the ϵ is not always linked to a speciic privacy risk for the users (such as "the probability that
an attacker can correctly infer my data") or a precise utility level for data analysts (such as "the accuracy of the
DP-ML model"). To promote the adoption of mobility data privacy technology such as those based on DP, we
should establish principles, design guidelines, and provide tools for explaining DP’s protection and limitation
from stakeholders’ practical interests. For example, we can help data contributors understand the privacy risk
(such as membership inference attacks or reconstruction attacks) under diferent privacy parameters given a
concrete DP algorithm; we can also design eicient methods to visualize how data analyzers’ utility metrics (such
as MSE or model accuracy) may change along with diferent privacy parameters for speciic mobility applications.

7 MOBILITY DATA SCIENCE APPLICATIONS

Mobility data science used to be limited in the domain of transportation but recent technological inventions
have created an abundance of mobility data, resulting in applications in many other domains of interest for
society. Such applications leverage mobility data to understand, explain, and predict where moving entities such
as humans, animals, or infectious diseases go, why they go where they go, and where they will go next. This
section outlines broad applications of mobility data science to illustrate the recent landscape of mobility data
science.

7.1 Trafic

Traic is a problem of global scale, as recognized by transportation science over a decade ago. Drivers in the
United States spend 6.9 billion of driving-hours stuck in traic and waste more than 11 billion liters of fuel per
year according to INRIX [113]. Measured per-capita, people in Russia and Thailand spend even more time in
traic, while Brazil, South Africa, the UK, and Germany are only slightly behind the United States. Leveraging
mobility data science and understanding the underlying behavior of human participants concomitantly with
diferent transportation modes, can enable more efective solutions to multiple problems at the heart of improving
traic management. Two main lines of research focus on: (1) traic monitoring at an aggregate level, e.g., to
help city administration, and (2) services that road users are getting. Existing work towards traic monitoring
include monitoring congestion [129], assessing the safety of roads and intersections [143], traic prediction [132],
evacuation routing [265], optimizing the public transportation schedules [193]. Eforts on the services provided
to road users include routing queries that balance the traic across roads [69], help ind drivers inding nearest
facilities [121], personalized routing [130], eco-routing for minimizing greenhouse emissions [134], and enabling
multi-modal trip planning [225]. But there are many open opportunities and challenges in using mobility data
to improve traic conditions. One example is devising accurate models for the dynamic scheduling of public
transportation. Another example is the context-aware optimization of traic signals ś e.g., incorporating the
impact of additional lux of pedestrians in bus/train stations, to minimize the stop-and-go impacts for vehicles. A
challenge of using mobility data science in the transportation domain is monitoring and reduction of emissions.
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Being able to quantify emissions (e.g., from transportation) is essential to accountability and reduction of emissions.
Using data on emissions collected from in-situ sensors but also sensed remotely through earth observation
(satellite) data will allow us to better understand the efects of e-mobility, better collective transportation, and
infrastructure improvements.

7.2 Urban Areas

In 2018, 55% of the world’s population (4.2 billion people) resided in urban areas, and this proportion is projected
to increase to 68% by 2050 [232]. Urban areas are a focal point for mobility application as they introduce a
variety of mobility modalities such as electrical vehicles [236] and bicycles and scooters with respective sharing
programs [133]. But by understanding how, where, and why people move in cities, outer suburban and regional
areas, the demand for infrastructure and energy can be better understood [272]. Improving this understanding
helps reduces urban inequalities in cities [166] such as access to high quality food [238] and healthcare [96].
Mobility data also helps improve urban safety by improving crime prediction [83] and helping to recommend
safe routes [205].

A speciic Urban mobility data science supports urban areas is through data-driven map construction [3] and
updating of existing maps to account for blocked or new road segments [48] which is paramount in autonomous
driving applications [141].
The real-time monitoring of urban mobility could result in situational awareness, initially a term coined in

defense applications, involving perception of the environmental states using the surrounding data, comprehension

of the ingested data to understand the emerging situations, and projection of future states and/or events that
require predictive analytics. Mobility data provides critical components and insights into situational awareness
in cities. When achieved, this applies not only to enabling robust critical infrastructures in cities but also to
protecting them from harm, e.g., forest ires, earthquakes, and terrorist attacks. Many researchers use mobility
data as input to enable situational awareness in cities as well as in airports [210].

7.3 Health Informatics

The spread of infectious diseases is a highly complex spatiotemporal process that is strongly tied to human
mobility [107] and human behavior [75]. Many recent works have used human mobility data for data-driven
epidemic forecasting as surveyed in [197]. A speciic example of leveraging mobility data for public health is
contact tracing, which refers to the process of tracking persons who may have come into spatial contact with an
infected person, and subsequently collecting further information about these contacts [152]. The feature-rich
interaction, processing and localization/communication modalities of smartphone devices, have brought these
to battle on the technological forefront and have curbed the fast spread of pandemics, like COVID-19. To this
date, the community has proposed a wide range of contact tracing approaches, including opportunistic [187] and
participatory approaches [65] approaches as well as privacy-sensitive [262], decentralized [228], proximity-based
(e.g., BLE, sound) [189], and location-based approaches (e.g., Wi-Fi, GPS) [65] approaches. However, a wide
range of challenges remain unanswered, including methodologies to improve the penetration and adoption rates,
alleviate privacy or expectation skepticism [32], ubiquitous availability on low-end terminals as well as techno-
logical/psychological adoption barriers [31], achieving cross-country interoperability with standard formations
beyond recommendations, scalability/reliability and accuracy veriication of engaged spatial technologies as well
as lessons about efectiveness from real large-scale deployments.
Another speciic health application for mobility data is elderly health monitoring. GPS-enabled smart-watch

technology can be used to monitor the movement of elderly users [217]. In particular, if the monitored user
is showing early signs of dementia, her/his trajectories could show an abrupt change from her/his movement
history [224]. For instance, a user who normally walks in a park then goes to a restaurant is found to only stay in
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the park for a substantial amount of time. Indoor sensors installed in the room can also be used to track whether
an elderly person or a patient falls from the bed. Trajectory outlier analysis methods, together with gerontology
knowledge, can be very useful for this kind of applications.

7.4 Indoor Environments

Indoor mobility data management has been described as a new frontier in data management [115]. But in addition
to data management, large-scale indoor localization data also raises challenges in data collection, data analysis
and data privacy. Indoor data collection is an open research problem due to the non-existence of the indoor
equivalent of GPS: a system that can provide the user location in any building worldwide. This is particularly
important in applications related to emergency management and infectious disease contact tracing. Systems
have been developed over the years to address this problem based on diferent data sources including WiFi
signal strength and time of arrival [257], cellular signal [196], Ultra-wideband [9], ultrasonic [111], magnetic
tracking [215], inertial sensors [103], among others. These novel data sources enable new applications in indoor
navigation, contact tracing, indoor analytics, and evacuation management.
Indoor data analytics allows to improve understanding of indoor behavior which has multiple beneits and

applications, including for crowd management [4], retail and POI recommendation systems [191], and for
optimizing energy use and improving sustainability in the long term [202]. For example, by utilizing WiFi logs,
Ren et al. [190] ind strong correlations between behaviors and user demography (e.g., age, gender and visitor
types), indicating that both indoor mobility behavior, in conjunction with online behavior, can be used to predict
the underlying demography of the visitors.

Occupancy behaviors are also highly linked with building management systems and controls [45]. By having
a more accurate energy use estimation using indoor spatial and mobility data, in addition to historical energy
consumption data, the performance of the buildings can be better optimized, towards achieving a more sustainable
operations [72]. The responsible use of mobility behavior analytics, including indoor and outdoor mobility
behaviors, strongly points towards the increased capacity for improving sustainable operations of buildings [202],
enabling net zero goals to be achieved.

7.5 Marine Transportation

According to UNCTAD, Over 80% of the volume of international trade in goods is carried by sea, and the
percentage is even higher for most developing countries [231]. Estimates say that the global shipping activity
emits 3% of the global emissions worldwide in 2022 [110]. These signiicant numbers, as well as the availability
of large-scale ship trajectory data obtained from the automatic identiication system (AIS) [18] motivated a lot
of research eforts on mobility data analysis for maritime. The stakeholders who seek beneit of such analyses
include the maritime authorities, environment oicers, ship owners, port and canal managers, and the transport
and logistic sector.

One major challenge is to ensure the safety at sea, which splits down to the technical challenges of identifying
positional anomalies[195], locating dark vessels (vessels that switch of their AIS devices) [148], and cleaning
location and identity spooing [74]. Additionally, an essential aspect is the detection of ishing activities to
ensure the sustainable ishing practices [58]. Since vessels do not have ixed routes in the sea, research has also
investigated the density of ship routes [250].
Multi-criteria routing using multiple optimization criteria including estimated time of arrival, fuel consump-

tion, safety, and comfort has been increasingly recognised as an important path planning problem [105]. An
optimization of ship routes could efectively lead to signiicant reductions of GHG emissions and contribute to
the actions against anthropogenic global warming. The inluence of ocean currents, waves, and wind on the
course and speed of ships have been known for centuries. Used optimally, ocean currents lead to more eicient
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paths between two given ports. Ship route computation approaches that exploit the potentials of wind, wave
and weather models aiming at minimize fuel consumption have been addressed by the marine science, maritime
engineering and transportation community [78].

Since green mobility is currently gaining huge attention, CO2 emission aware ship routing is expecting to get
an enormous impact in economy, politics and society and provides very promising opportunities for the spatial
and spatiotemporal database and mobility community. Marine transportation becomes particularly important in
the scope of climate change (e.g., the advent of hydrogen/battery/fossil/atom hybrid vessels) as well as digitization
for new infrastructure-free localization technologies on-board.

7.6 Social Connections

Location-based social networks (LBSNs) bridge the gap between the physical world and online social networking
services [271]. LBSN data capture both human mobility (in the form of check-ins to discrete points of interest)
and a social network between individual humans. Combining mobility data and social networks, LBSN data inds
many applications. A irst application found in the literature was on modeling and describing human mobility
patterns (e.g., [55, 168]), analyzing these patterns (e.g.,[54]), and explaining why individual user choose locations
and how social ties afect this choice (e.g., [239]). Another application is that of location recommendation, which
leverages check-ins of users and their ratings in the user-location network to recommend new locations to
users [26]. A closely related application area is that of location prediction (e.g., [53]), which predicts the future
check-ins of users. Another active research ield in LBSNs analysis is friend recommendation or social link
prediction (e.g., [203]), which suggests new friends to users based on similar interests at similar locations, while
also having similar social connections. Other research topics concerning LBSNs include eicient query processing
(e.g., [17]) inding user communities (e.g., [259]), and estimating the social inluence of users (e.g., [248]).

This plethora of applications and research shows how mobility data in connection with social network data
can be used to understand the social fabric that ties us together. A potential future application is using human
mobility data to reinforce this social fabric by recommending social events and meetings to groups of people to
help people ind new friends, collaborators, sports mates, teachers, mentors, and family members.

8 CONCLUSIONS

This paper presented the current state of mobility data science pipeline in addressing the speciic challenges of
mobility data. A main question that this paper answered is howmobility data science is diferent from data science.
The space and time dimensions in mobility data call for diferent methods of data acquisition, management,
analysis, and privacy preservation which are not addressed by the common data science tools. Accordingly we
surveyed the main problems that are currently being researched, we identiied major research questions for the
coming years, and described applications that lead to broader impacts of mobility data science. Co-authored by a
diversity of academics and industry professionals, this paper also conferred a community efort to sketch the
boundary of mobility data science as an interdisciplinary ield and bring together a dedicated research community
around the identiied research challenges.
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